Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Nodal metabolic tumour volume on baseline 18F-FDG PET/CT and overall survival in stage II and III NSCLC patients undergoing curative-intent chemoradiotherapy/radiotherapy
    Alipour, R ; Bucknell, N ; Bressel, M ; Everitt, S ; MacManus, M ; Siva, S ; Hofman, MS ; Akhurst, T ; Hicks, RJ ; Iravani, A (WILEY, 2021-10)
    INTRODUCTION: This study aims to investigate whether nodal metabolic tumour volume (nMTV) and nodal total lesion glycolysis (nTLG) on Fluorine-18 fluoro-deoxy-glucose positron emission tomography-computed tomography (18 F-FDG PET/CT) in inoperable node-positive stage II and III non-small cell lung cancer (NSCLC) are independent predictors of overall survival (OS) in patients undergoing curative-intent chemoradiotherapy/radiotherapy (CRT/RT). METHODS: Data from two prospective trials between 2004 and 2016 were analysed retrospectively. Primary, nodal and total metabolic tumour volume and total lesion glycolysis (pMTV, nMTV, tMTV, pTLG, nTLG and tTLG, respectively) were derived from baseline 18 F-FDG PET/CT. Cox regressions were used to model OS by 18 F-FDG PET/CT parameters adjusting for overall stage. RESULTS: 89 patients with stage II (8%) and stage III (92%) were included. The median age at diagnosis was 67 years; 62% were male. The median follow-up was 6.9 years; the median OS was 2.2 years (95% CI 1.7-3.1). The median pMTV, nMTV and tMTV were 14 mL (range 0-360), 8 mL (range 0-250) and 34 mL (range 3-384), respectively. In 3 patients, the primary lesion could not be delineated from the central hilar mass. There was no association between nMTV (adjusted HR 1.04, 95% CI 0.95-1.15, P-value 0.43), pMTV (adjusted HR 1.0, 95% CI 0.96-1.04, P-value 0.92), tMTV (adjusted HR 1.0, 95% CI 0.97-1.04, P-value 0.88), nTLG, pTLG or tTLG and OS. Consistent results were noted when patients with central hilar lesions were excluded from analysis. CONCLUSION: In node-positive stage II and III NSCLC patients who underwent 18 F-FDG PET/CT-guided target delineation curative-intent concurrent CRT/RT, metabolic parameters did not appear to provide independent prognostication.
  • Item
    Thumbnail Image
    A prospective observational study of Gallium-68 ventilation and perfusion PET/CT during and after radiotherapy in patients with non-small cell lung cancer
    Siva, S ; Callahan, J ; Kron, T ; Martin, OA ; MacManus, MP ; Ball, DL ; Hicks, RJ ; Hofman, MS (BMC, 2014-10-02)
    BACKGROUND: Non-small cell lung cancer (NSCLC) accounts for 85% of lung cancers, and is the leading cause of cancer deaths. Radiation therapy (RT), alone or in combination with chemotherapy, is the standard of care for curative intent treatment of patients with locally advanced or inoperable NSCLC. The ability to intensify treatment to achieve a better chance for cure is limited by the risk of injury to the surrounding lung. METHODS/DESIGN: This is a prospective observational study of 60 patients with NSCLC receiving curative intent RT. Independent human ethics board approval was received from the Peter MacCallum Cancer Centre ethics committee. In this research, Galligas and Gallium-68 macroaggregated albumin (MAA) positron emission tomography (PET) imaging will be used to measure ventilation (V) and perfusion (Q) in the lungs. This is combined with computed tomography (CT) and both performed with a four dimensional (4D) technique that tracks respiratory motion. This state-of-the-art scan has superior resolution, accuracy and quantitative ability than previous techniques. The primary objective of this research is to observe changes in ventilation and perfusion secondary to RT as measured by 4D V/Q PET/CT. Additionally, we plan to model personalised RT plans based on an individual's lung capacity. Increasing radiation delivery through areas of poorly functioning lung may enable delivery of larger, more effective doses to tumours without increasing toxicity. By performing a second 4D V/Q PET/CT scan during treatment, we plan to simulate biologically adapted RT depending on the individual's accumulated radiation injury. Tertiary aims of the study are assess the prognostic significance of a novel combination of clinical, imaging and serum biomarkers in predicting for the risk of lung toxicity. These biomarkers include spirometry, (18)F-Fluorodeoxyglucose PET/CT, gamma-H2AX signals in hair and lymphocytes, as well as assessment of blood cytokines. DISCUSSION: By correlating these biomarkers to toxicity outcomes, we aim to identify those patients early who will not tolerate RT intensification during treatment. This research is an essential step leading towards the design of future biologically adapted radiotherapy strategies to mitigate the risk of lung injury during dose escalation for patients with locally advanced lung cancer. TRIALS REGISTRATION: Universal Trial Number (UTN) U1111-1138-4421.