Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    ImmunoPET: IMaging of cancer imMUNOtherapy targets with positron Emission Tomography: a phase 0/1 study characterising PD-L1 with 89Zr-durvalumab (MEDI4736) PET/CT in stage III NSCLC patients receiving chemoradiation study protocol.
    Hegi-Johnson, F ; Rudd, SE ; Wichmann, C ; Akhurst, T ; Roselt, P ; Trinh, J ; John, T ; Devereux, L ; Donnelly, PS ; Hicks, R ; Scott, AM ; Steinfort, D ; Fox, S ; Blyth, B ; Parakh, S ; Hanna, GG ; Callahan, J ; Burbury, K ; MacManus, M (BMJ Publishing Group, 2022-11-18)
    BACKGROUND: ImmunoPET is a multicentre, single arm, phase 0-1 study that aims to establish if 89Zr-durvalumab PET/CT can be used to interrogate the expression of PD-L1 in larger, multicentre clinical trials. METHODS: The phase 0 study recruited 5 PD-L1+ patients with metastatic non-small cell lung cancer (NSCLC). Patients received 60MBq/70 kg 89Zr-durva up to a maximum of 74 MBq, with scan acquisition at days 0, 1, 3 or 5±1 day. Data on (1) Percentage of injected 89Zr-durva dose found in organs of interest (2) Absorbed organ doses (µSv/MBq of administered 89Zr-durva) and (3) whole-body dose expressed as mSv/100MBq of administered dose was collected to characterise biodistribution.The phase 1 study will recruit 20 patients undergoing concurrent chemoradiotherapy for stage III NSCLC. Patients will have 89Zr-durva and FDG-PET/CT before, during and after chemoradiation. In order to establish the feasibility of 89Zr-durva PET/CT for larger multicentre trials, we will collect both imaging and toxicity data. Feasibility will be deemed to have been met if more than 80% of patients are able complete all trial requirements with no significant toxicity. ETHICS AND DISSEMINATION: This phase 0 study has ethics approval (HREC/65450/PMCC 20/100) and is registered on the Australian Clinical Trials Network (ACTRN12621000171819). The protocol, technical and clinical data will be disseminated by conference presentations and publications. Any modifications to the protocol will be formally documented by administrative letters and must be submitted to the approving HREC for review and approval. TRIAL REGISTRATION NUMBER: Australian Clinical Trials Network ACTRN12621000171819.
  • Item
    Thumbnail Image
    Imaging immunity in patients with cancer using positron emission tomography
    Hegi-Johnson, F ; Rudd, S ; Hicks, RJ ; De Ruysscher, D ; Trapani, JA ; John, T ; Donnelly, P ; Blyth, B ; Hanna, G ; Everitt, S ; Roselt, P ; MacManus, MP (NATURE PORTFOLIO, 2022-04-07)
    Immune checkpoint inhibitors and related molecules can achieve tumour regression, and even prolonged survival, for a subset of cancer patients with an otherwise dire prognosis. However, it remains unclear why some patients respond to immunotherapy and others do not. PET imaging has the potential to characterise the spatial and temporal heterogeneity of both immunotherapy target molecules and the tumor immune microenvironment, suggesting a tantalising vision of personally-adapted immunomodulatory treatment regimens. Personalised combinations of immunotherapy with local therapies and other systemic therapies, would be informed by immune imaging and subsequently modified in accordance with therapeutically induced immune environmental changes. An ideal PET imaging biomarker would facilitate the choice of initial therapy and would permit sequential imaging in time-frames that could provide actionable information to guide subsequent therapy. Such imaging should provide either prognostic or predictive measures of responsiveness relevant to key immunotherapy types but, most importantly, guide key decisions on initiation, continuation, change or cessation of treatment to reduce the cost and morbidity of treatment while enhancing survival outcomes. We survey the current literature, focusing on clinically relevant immune checkpoint immunotherapies, for which novel PET tracers are being developed, and discuss what steps are needed to make this vision a reality.
  • Item
    Thumbnail Image
    Durable Complete Remission and Long-Term Survival in FDG-PET Staged Patients with Stage III Follicular Lymphoma, Treated with Wide-Field Radiation Therapy
    MacManus, MP ; Hicks, RJ ; Bressel, M ; Campbell, BA ; Wirth, A ; Ryan, G ; Prince, HM ; Wolf, M ; Brown, R ; Seymour, JF (MDPI, 2020-04)
    Advanced-stage follicular lymphoma (FL) is generally considered incurable with conventional systemic therapies, but historic series describe long-term disease-free survival in stage III disease treated with wide-field radiation therapy (WFRT), encompassing all known disease sites. We report outcomes for patients staged with 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) and treated with CT-planned WFRT, given as either comprehensive lymphatic irradiation (CLI) or total nodal irradiation (TNI). This analysis of a prospective cohort includes PET-staged patients given curative-intent WFRT as a component of initial therapy, or as sole treatment for stage III FL. Thirty-three PET-staged patients with stage III FL received WFRT to 24-30Gy between 1999 and 2017. Fifteen patients also received planned systemic therapy (containing rituximab in 11 cases) as part of their primary treatment. At 10 years, overall survival and freedom from progression (FFP) were 100% and 75%, respectively. None of the 11 rituximab-treated patients have relapsed. Nine relapses occurred; seven patients required treatment, and all responded to salvage therapies. A single death occurred at 16 years. The principal acute toxicity was transient hematologic; one patient had residual grade two toxicity at one year. With FDG-PET staging, most patients with stage III FL experience prolonged FFP after WFRT, especially when combined with rituximab.
  • Item
    Thumbnail Image
    Nodal metabolic tumour volume on baseline 18F-FDG PET/CT and overall survival in stage II and III NSCLC patients undergoing curative-intent chemoradiotherapy/radiotherapy
    Alipour, R ; Bucknell, N ; Bressel, M ; Everitt, S ; MacManus, M ; Siva, S ; Hofman, MS ; Akhurst, T ; Hicks, RJ ; Iravani, A (WILEY, 2021-10)
    INTRODUCTION: This study aims to investigate whether nodal metabolic tumour volume (nMTV) and nodal total lesion glycolysis (nTLG) on Fluorine-18 fluoro-deoxy-glucose positron emission tomography-computed tomography (18 F-FDG PET/CT) in inoperable node-positive stage II and III non-small cell lung cancer (NSCLC) are independent predictors of overall survival (OS) in patients undergoing curative-intent chemoradiotherapy/radiotherapy (CRT/RT). METHODS: Data from two prospective trials between 2004 and 2016 were analysed retrospectively. Primary, nodal and total metabolic tumour volume and total lesion glycolysis (pMTV, nMTV, tMTV, pTLG, nTLG and tTLG, respectively) were derived from baseline 18 F-FDG PET/CT. Cox regressions were used to model OS by 18 F-FDG PET/CT parameters adjusting for overall stage. RESULTS: 89 patients with stage II (8%) and stage III (92%) were included. The median age at diagnosis was 67 years; 62% were male. The median follow-up was 6.9 years; the median OS was 2.2 years (95% CI 1.7-3.1). The median pMTV, nMTV and tMTV were 14 mL (range 0-360), 8 mL (range 0-250) and 34 mL (range 3-384), respectively. In 3 patients, the primary lesion could not be delineated from the central hilar mass. There was no association between nMTV (adjusted HR 1.04, 95% CI 0.95-1.15, P-value 0.43), pMTV (adjusted HR 1.0, 95% CI 0.96-1.04, P-value 0.92), tMTV (adjusted HR 1.0, 95% CI 0.97-1.04, P-value 0.88), nTLG, pTLG or tTLG and OS. Consistent results were noted when patients with central hilar lesions were excluded from analysis. CONCLUSION: In node-positive stage II and III NSCLC patients who underwent 18 F-FDG PET/CT-guided target delineation curative-intent concurrent CRT/RT, metabolic parameters did not appear to provide independent prognostication.