Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    The role of 18F-FDG PET/CT in retroperitoneal sarcomas-A multicenter retrospective study
    Subramaniam, S ; Callahan, J ; Bressel, M ; Hofman, MS ; Mitchell, C ; Hendry, S ; Vissers, FL ; Van Der Hiel, B ; Patel, D ; Van Houdt, WJ ; Tseng, WW ; Gyorki, DE (WILEY, 2021-03)
    BACKGROUND: The role of 18 F-fluorodeoxyglucose positron emission tomography/computed tomography (18 F-FDG PET/CT) in the evaluation of retroperitoneal sarcomas is poorly defined. We evaluated the correlation of maximum standardized uptake value (SUVmax) with pathologic tumor grade in the surgical specimen of primary retroperitoneal dedifferentiated liposarcoma (DDLPS) and leiomyosarcoma (LMS). METHODS: Patients with the above histological subtypes in three participating institutions with preoperative 18 F-FDG PET/CT scan and histopathological specimen available for review were included. The association between SUVmax and pathological grade was assessed. Correlation between SUVmax and relapse-free survival (RFS) and overall survival (OS) were also studied. RESULTS: Of the total 58 patients, final pathological subtype was DDLPS in 44 (75.9%) patients and LMS in 14 (24.1%) patients. The mean SUVmax was 8.7 with a median 7.1 (range, 2.2-33.9). The tumors were graded I, II, III in 6 (10.3%), 35 (60.3%), and 17 (29.3%) patients, respectively. There was an association of higher histological grade with higher SUVmax (rs  = 0.40, p = .002). Increasing SUVmax was associated with worse RFS (p = .003) and OS (p = .003). CONCLUSION: There is a correlation between SUVmax and pathologic tumor grade; increasing SUVmax was associated with worse OS and RFS, providing a preoperative noninvasive surrogate marker of tumor grade and biological behavior.
  • Item
    No Preview Available
    Preclinical Evidence of the Efficacy of Lewis Y Car T Cells in Patient-Derived Models of Prostate Cancer
    Risbridger, GP ; Porter, LH ; Zhu, J ; Byrne, D ; Lister, N ; Azad, A ; Hofman, M ; Vela, I ; Taylor, RA ; Neeson, P ; Darcy, P ; Trapani, J (The Endocrine Society, 2021-05-03)
    Abstract Chimeric antigen receptor T (CAR T) cell therapy is an adoptive immunotherapy that has led to new treatments for lymphoma, leukemia, and other blood cancers; however, its efficacy for prostate cancer remains unproven. Here we report pre-clinical evidence of the efficacy of CAR T cell therapy against the Lewis Y antigen (LeY) using patient-derived models of prostate cancer. To assess the expression of LeY on prostate tumours, we performed immunohistochemistry on a cohort of 41 patient-derived xenografts (PDXs). Cytoplasmic and membrane expression were separately assessed and quantified, for each patient. Overall, 61% (25/41) of PDXs were positive for membrane LeY expression, of which 18 PDXs had greater than 50% membrane-positive cells, and considered most suitable to detection and stable binding by anti-LeY CAR T’s. To determine the in vitro sensitivity to CAR T cytotoxicity, we selected 4 PDXs with high and 2 PDXs with low LeY expression using 3 androgen receptor (AR)-positive adenocarcinomas and 3 AR-negative tumors expressing neuroendocrine markers. Next we established organoids for in vitro co-culture assays where organoids were co-incubated with an equal number of anti-LeY+ CAR T cells or Empty vector control CAR T cells (Ev CAR T). Using time-lapse microscopy we reported destruction of organoids by LeY+ CAR T cells as indicated by their morphological collapse and uptake of propidium iodide from the culture medium; control Ev CAR T cells produced no cytotoxicity. Over the 48h assay, the level of target cell death of the LeY+ organoids was correlated to the intensity LeY surface expression. Target cell death mediated by the CAR T cells required perforin and granzyme B, as potent and highly specific small molecule inhibitors of perforin (SN34960) and granzyme B (C20) applied alone or in combination greatly decreased PI uptake, indicating organoid survival. Neither inhibitor adversely affected CAR T cell viability as measured by PI and Annexin V staining. This demonstrated canonical activation of granule exocytosis pathway by the CAR T cells, leading to organoid cell death. To assess CAR T cell efficacy in vivo, we selected one PDX with high LeY expression. Monotherapy with CAR T cells failed to decrease tumour volume compared to vehicle control. However, CAR T cells given after a single dose of the chemotherapeutic agent carboplatin greatly and durably reduced tumour burden, with residual tumour mass being less than 1% of their original size (0.56 ± 0.23% of tumour volume at the start of treatment). Overall, these data provide preclinical evidence that: i) high membrane expression of LeY correlates with in vitro and in vivo CAR T cell-induced tumour cell death via the canonical perforin/granzyme B mechanism; and, ii) membrane LeY can be used as a biomarker for patient selection.