Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 13
  • Item
    No Preview Available
    Pheo-Type: A Diagnostic Gene-expression Assay for the Classification of Pheochromocytoma and Paraganglioma
    Flynn, A ; Dwight, T ; Harris, J ; Benn, D ; Zhou, L ; Hogg, A ; Catchpoole, D ; James, P ; Duncan, EL ; Trainer, A ; Gill, AJ ; Clifton-Bligh, R ; Hicks, RJ ; Tothill, RW (ENDOCRINE SOC, 2016-03)
    CONTEXT: Pheochromocytomas and paragangliomas (PPGLs) are heritable neoplasms that can be classified into gene-expression subtypes corresponding to their underlying specific genetic drivers. OBJECTIVE: This study aimed to develop a diagnostic and research tool (Pheo-type) capable of classifying PPGL tumors into gene-expression subtypes that could be used to guide and interpret genetic testing, determine surveillance programs, and aid in elucidation of PPGL biology. DESIGN: A compendium of published microarray data representing 205 PPGL tumors was used for the selection of subtype-specific genes that were then translated to the Nanostring gene-expression platform. A support vector machine was trained on the microarray dataset and then tested on an independent Nanostring dataset representing 38 familial and sporadic cases of PPGL of known genotype (RET, NF1, TMEM127, MAX, HRAS, VHL, and SDHx). Different classifier models involving between three and six subtypes were compared for their discrimination potential. RESULTS: A gene set of 46 genes and six endogenous controls was selected representing six known PPGL subtypes; RTK1-3 (RET, NF1, TMEM127, and HRAS), MAX-like, VHL, and SDHx. Of 38 test cases, 34 (90%) were correctly predicted to six subtypes based on the known genotype to gene-expression subtype association. Removal of the RTK2 subtype from training, characterized by an admixture of tumor and normal adrenal cortex, improved the classification accuracy (35/38). Consolidation of RTK and pseudohypoxic PPGL subtypes to four- and then three-class architectures improved the classification accuracy for clinical application. CONCLUSIONS: The Pheo-type gene-expression assay is a reliable method for predicting PPGL genotype using routine diagnostic tumor samples.
  • Item
    Thumbnail Image
    Cousins not twins: intratumoural and intertumoural heterogeneity in syndromic neuroendocrine tumours
    Flynn, A ; Dwight, T ; Benn, D ; Deb, S ; Colebatch, AJ ; Fox, S ; Harris, J ; Duncan, EL ; Robinson, B ; Hogg, A ; Ellul, J ; To, H ; Cuong, D ; Miller, JA ; Yates, C ; James, P ; Trainer, A ; Gill, AJ ; Clifton-Bligh, R ; Hicks, RJ ; Tothill, RW (WILEY, 2017-07)
  • Item
    Thumbnail Image
    Mutational spectrum in a worldwide study of 29,700 families with BRCA1 or BRCA2 mutations
    Rebbeck, TR ; Friebel, TM ; Friedman, E ; Hamann, U ; Huo, D ; Kwong, A ; Olah, E ; Olopade, OI ; Solano, AR ; Teo, S-H ; Thomassen, M ; Weitzel, JN ; Chan, TL ; Couch, FJ ; Goldgar, DE ; Kruse, TA ; Palmero, EI ; Park, SK ; Torres, D ; van Rensburg, EJ ; McGuffog, L ; Parsons, MT ; Leslie, G ; Aalfs, CM ; Abugattas, J ; Adlard, J ; Agata, S ; Aittomaki, K ; Andrews, L ; Andrulis, IL ; Arason, A ; Arnold, N ; Arun, BK ; Asseryanis, E ; Auerbach, L ; Azzollini, J ; Balmana, J ; Barile, M ; Barkardottir, RB ; Barrowdale, D ; Benitez, J ; Berger, A ; Berger, R ; Blanco, AM ; Blazer, KR ; Blok, MJ ; Bonadona, V ; Bonanni, B ; Bradbury, AR ; Brewer, C ; Buecher, B ; Buys, SS ; Caldes, T ; Caliebe, A ; Caligo, MA ; Campbell, I ; Caputo, SM ; Chiquette, J ; Chung, WK ; Claes, KBM ; Collee, JM ; Cook, J ; Davidson, R ; de la Hoya, M ; De Leeneer, K ; de Pauw, A ; Delnatte, C ; Diez, O ; Ding, YC ; Ditsch, N ; Domchek, S ; Dorfling, CM ; Velazquez, C ; Dworniczak, B ; Eason, J ; Easton, DF ; Eeles, R ; Ehrencrona, H ; Ejlertsen, B ; Engel, C ; Engert, S ; Evans, DG ; Faivre, L ; Feliubadalo, L ; Ferrer, SF ; Foretova, L ; Fowler, J ; Frost, D ; Galvao, HCR ; Ganz, PA ; Garber, J ; Gauthier-Villars, M ; Gehrig, A ; Gerdes, A-M ; Gesta, P ; Giannini, G ; Giraud, S ; Glendon, G ; Godwin, AK ; Greene, MH ; Gronwald, J ; Gutierrez-Barrera, A ; Hahnen, E ; Hauke, J ; Henderson, A ; Hentschel, J ; Hogervorst, FBL ; Honisch, E ; Imyanitov, EN ; Isaacs, C ; Izatt, L ; Izquierdo, A ; Jakubowska, A ; James, P ; Janavicius, R ; Jensen, UB ; John, EM ; Vijai, J ; Kaczmarek, K ; Karlan, BY ; Kast, K ; Kim, S-W ; Konstantopoulou, I ; Korach, J ; Laitman, Y ; Lasa, A ; Lasset, C ; Lazaro, C ; Lee, A ; Lee, MH ; Lester, J ; Lesueur, F ; Liljegren, A ; Lindor, NM ; Longy, M ; Loud, JT ; Lu, KH ; Lubinski, J ; Machackova, E ; Manoukian, S ; Mari, V ; Martinez-Bouzas, C ; Matrai, Z ; Mebirouk, N ; Meijers-Heijboer, HEJ ; Meindl, A ; Mensenkamp, AR ; Mickys, U ; Miller, A ; Montagna, M ; Moysich, KB ; Mulligan, AM ; Musinsky, J ; Neuhausen, SL ; Nevanlinna, H ; Ngeow, J ; Nguyen, HP ; Niederacher, D ; Nielsen, HR ; Nielsen, FC ; Nussbaum, RL ; Offit, K ; Ofverholm, A ; Ong, K-R ; Osorio, A ; Papi, L ; Papp, J ; Pasini, B ; Pedersen, IS ; Peixoto, A ; Peruga, N ; Peterlongo, P ; Pohl, E ; Pradhan, N ; Prajzendanc, K ; Prieur, F ; Pujol, P ; Radice, P ; Ramus, SJ ; Rantala, J ; Rashid, MU ; Rhiem, K ; Robson, M ; Rodriguez, GC ; Rogers, MT ; Rudaitis, V ; Schmidt, AY ; Schmutzler, RK ; Senter, L ; Shah, PD ; Sharma, P ; Side, LE ; Simard, J ; Singer, CF ; Skytte, A-B ; Slavin, TP ; Snape, K ; Sobol, H ; Southey, M ; Steele, L ; Steinemann, D ; Sukiennicki, G ; Sutter, C ; Szabo, CI ; Tan, YY ; Teixeira, MR ; Terry, MB ; Teule, A ; Thomas, A ; Thull, DL ; Tischkowitz, M ; Tognazzo, S ; Toland, AE ; Topka, S ; Trainer, AH ; Tung, N ; van Asperen, CJ ; van der Hout, AH ; van der Kolk, LE ; van der Luijt, RB ; Van Heetvelde, M ; Varesco, L ; Varon-Mateeva, R ; Vega, A ; Villarreal-Garza, C ; von Wachenfeldt, A ; Walker, L ; Wang-Gohrke, S ; Wappenschmidt, B ; Weber, BHF ; Yannoukakos, D ; Yoon, S-Y ; Zanzottera, C ; Zidan, J ; Zorn, KK ; Selkirk, CGH ; Hulick, PJ ; Chenevix-Trench, G ; Spurdle, AB ; Antoniou, AC ; Nathanson, KL (WILEY-HINDAWI, 2018-05)
    The prevalence and spectrum of germline mutations in BRCA1 and BRCA2 have been reported in single populations, with the majority of reports focused on White in Europe and North America. The Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) has assembled data on 18,435 families with BRCA1 mutations and 11,351 families with BRCA2 mutations ascertained from 69 centers in 49 countries on six continents. This study comprehensively describes the characteristics of the 1,650 unique BRCA1 and 1,731 unique BRCA2 deleterious (disease-associated) mutations identified in the CIMBA database. We observed substantial variation in mutation type and frequency by geographical region and race/ethnicity. In addition to known founder mutations, mutations of relatively high frequency were identified in specific racial/ethnic or geographic groups that may reflect founder mutations and which could be used in targeted (panel) first pass genotyping for specific populations. Knowledge of the population-specific mutational spectrum in BRCA1 and BRCA2 could inform efficient strategies for genetic testing and may justify a more broad-based oncogenetic testing in some populations.
  • Item
    Thumbnail Image
    Exome Sequencing Identifies Rare Deleterious Mutations in DNA Repair Genes FANCC and BLM as Potential Breast Cancer Susceptibility Alleles
    Thompson, ER ; Doyle, MA ; Ryland, GL ; Rowley, SM ; Choong, DYH ; Tothill, RW ; Thorne, H ; Barnes, DR ; Li, J ; Ellul, J ; Philip, GK ; Antill, YC ; James, PA ; Trainer, AH ; Mitchell, G ; Campbell, IG ; Horwitz, MS (PUBLIC LIBRARY SCIENCE, 2012-09)
    Despite intensive efforts using linkage and candidate gene approaches, the genetic etiology for the majority of families with a multi-generational breast cancer predisposition is unknown. In this study, we used whole-exome sequencing of thirty-three individuals from 15 breast cancer families to identify potential predisposing genes. Our analysis identified families with heterozygous, deleterious mutations in the DNA repair genes FANCC and BLM, which are responsible for the autosomal recessive disorders Fanconi Anemia and Bloom syndrome. In total, screening of all exons in these genes in 438 breast cancer families identified three with truncating mutations in FANCC and two with truncating mutations in BLM. Additional screening of FANCC mutation hotspot exons identified one pathogenic mutation among an additional 957 breast cancer families. Importantly, none of the deleterious mutations were identified among 464 healthy controls and are not reported in the 1,000 Genomes data. Given the rarity of Fanconi Anemia and Bloom syndrome disorders among Caucasian populations, the finding of multiple deleterious mutations in these critical DNA repair genes among high-risk breast cancer families is intriguing and suggestive of a predisposing role. Our data demonstrate the utility of intra-family exome-sequencing approaches to uncover cancer predisposition genes, but highlight the major challenge of definitively validating candidates where the incidence of sporadic disease is high, germline mutations are not fully penetrant, and individual predisposition genes may only account for a tiny proportion of breast cancer families.
  • Item
    Thumbnail Image
    Prevalence of PALB2 mutations in Australian familial breast cancer cases and controls
    Thompson, ER ; Gorringe, KL ; Rowley, SM ; Wong-Brown, MW ; McInerny, S ; Li, N ; Trainer, AH ; Devereux, L ; Doyle, MA ; Li, J ; Lupat, R ; Delatycki, MB ; Mitchell, G ; James, PA ; Scott, RJ ; Campbell, IG (BMC, 2015-08-19)
    INTRODUCTION: PALB2 is emerging as a high-penetrance breast cancer predisposition gene in the order of BRCA1 and BRCA2. However, large studies that have evaluated the full gene rather than just the most common variants in both cases and controls are required before all truncating variants can be included in familial breast cancer variant testing. METHODS: In this study we analyse almost 2000 breast cancer cases sourced from individuals referred to familial cancer clinics, thus representing typical cases presenting in clinical practice. These cases were compared to a similar number of population-based cancer-free controls. RESULTS: We identified a significant excess of truncating variants in cases (1.3 %) versus controls (0.2 %), including six novel variants (p = 0.0001; odds ratio (OR) 6.58, 95 % confidence interval (CI) 2.3-18.9). Three of the four control individuals carrying truncating variants had at least one relative with breast cancer. There was no excess of missense variants in cases overall, but the common c.1676A > G variant (rs152451) was significantly enriched in cases and may represent a low-penetrance polymorphism (p = 0.002; OR 1.24 (95 % CI 1.09-1.47). CONCLUSIONS: Our findings support truncating variants in PALB2 as high-penetrance breast cancer susceptibility alleles, and suggest that a common missense variant may also lead to a low level of increased breast cancer risk.
  • Item
    Thumbnail Image
    Reevaluation of the BRCA2 truncating allele c.9976A > T (p.Lys3326Ter) in a familial breast cancer context
    Thompson, ER ; Gorringe, KL ; Rowley, SM ; Li, N ; McInerny, S ; Wong-Brown, MW ; Devereux, L ; Li, J ; Trainer, AH ; Mitchell, G ; Scott, RJ ; James, PA ; Campbell, IG (NATURE PORTFOLIO, 2015-10-12)
    The breast cancer predisposition gene, BRCA2, has a large number of genetic variants of unknown effect. The variant rs11571833, an A > T transversion in the final exon of the gene that leads to the creation of a stop codon 93 amino acids early (K3326*), is reported as a neutral polymorphism but there is some evidence to suggest an association with an increased risk of breast cancer. We assessed whether this variant was enriched in a cohort of breast cancer cases ascertained through familial cancer clinics compared to population-based non-cancer controls using a targeted sequencing approach. We identified the variant in 66/2634 (2.5%) cases and 33/1996 (1.65%) controls, indicating an enrichment in the breast cancer cases (p = 0.047, OR 1.53, 95% CI 1.00-2.34). This data is consistent with recent iCOGs data suggesting that this variant is not neutral with respect to breast cancer risk. rs11571833 may need to be included in SNP panels for evaluating breast cancer risk.
  • Item
    Thumbnail Image
    Homologous recombination DNA repair defects in PALB2-associated breast cancers
    Li, A ; Geyer, FC ; Blecua, P ; Lee, JY ; Selenica, P ; Brown, DN ; Pareja, F ; Lee, SSK ; Kumar, R ; Rivera, B ; Bi, R ; Piscuoglio, S ; Wen, HY ; Lozada, JR ; Gularte-Merida, R ; Cavallone, L ; Rezoug, Z ; Nguyen-Dumont, T ; Peterlongo, P ; Tondini, C ; Terkelsen, T ; Ronlund, K ; Boonen, SE ; Mannerma, A ; Winqvist, R ; Janatova, M ; Rajadurai, P ; Xia, B ; Norton, L ; Robson, ME ; Ng, P-S ; Looi, L-M ; Southey, MC ; Weigelt, B ; Soo-Hwang, T ; Tischkowitz, M ; Foulkes, WD ; Reis-Filho, JS ; Aghmesheh, M ; Amor, D ; Andrews, L ; Antill, Y ; Balleine, R ; Beesley, J ; Blackburn, A ; Bogwitz, M ; Brown, M ; Burgess, M ; Burke, J ; Butow, P ; Caldon, L ; Campbell, I ; Christian, A ; Clarke, C ; Cohen, P ; Crook, A ; Cui, J ; Cummings, M ; Dawson, S-J ; De Fazio, A ; Delatycki, M ; Dobrovic, A ; Dudding, T ; Duijf, P ; Edkins, E ; Edwards, S ; Farshid, G ; Fellows, A ; Field, M ; Flanagan, J ; Fong, P ; Forbes, J ; Forrest, L ; Fox, S ; French, J ; Friedlander, M ; Ortega, DG ; Gattas, M ; Giles, G ; Gill, G ; Gleeson, M ; Greening, S ; Haan, E ; Harris, M ; Hayward, N ; Hickie, I ; Hopper, J ; Hunt, C ; James, P ; Jenkins, M ; Kefford, R ; Kentwell, M ; Kirk, J ; Kollias, J ; Lakhani, S ; Lindeman, G ; Lipton, L ; Lobb, L ; Lok, S ; Macrea, F ; Mane, G ; Marsh, D ; Mclachlan, S-A ; Meiser, B ; Milne, R ; Nightingale, S ; O'Connell, S ; Pachter, N ; Patterson, B ; Phillips, K ; Saleh, M ; Salisbury, E ; Saunders, C ; Saunus, J ; Scott, C ; Scott, R ; Sexton, A ; Shelling, A ; Simpson, P ; Spigelman, A ; Spurdle, M ; Stone, J ; Taylor, J ; Thorne, H ; Trainer, A ; Trench, G ; Tucker, K ; Visvader, J ; Walker, L ; Wallis, M ; Williams, R ; Winship, I ; Wu, K ; Young, MA (NATURE PUBLISHING GROUP, 2019-08-08)
    Mono-allelic germline pathogenic variants in the Partner And Localizer of BRCA2 (PALB2) gene predispose to a high-risk of breast cancer development, consistent with the role of PALB2 in homologous recombination (HR) DNA repair. Here, we sought to define the repertoire of somatic genetic alterations in PALB2-associated breast cancers (BCs), and whether PALB2-associated BCs display bi-allelic inactivation of PALB2 and/or genomic features of HR-deficiency (HRD). Twenty-four breast cancer patients with pathogenic PALB2 germline mutations were analyzed by whole-exome sequencing (WES, n = 16) or targeted capture massively parallel sequencing (410 cancer genes, n = 8). Somatic genetic alterations, loss of heterozygosity (LOH) of the PALB2 wild-type allele, large-scale state transitions (LSTs) and mutational signatures were defined. PALB2-associated BCs were found to be heterogeneous at the genetic level, with PIK3CA (29%), PALB2 (21%), TP53 (21%), and NOTCH3 (17%) being the genes most frequently affected by somatic mutations. Bi-allelic PALB2 inactivation was found in 16 of the 24 cases (67%), either through LOH (n = 11) or second somatic mutations (n = 5) of the wild-type allele. High LST scores were found in all 12 PALB2-associated BCs with bi-allelic PALB2 inactivation sequenced by WES, of which eight displayed the HRD-related mutational signature 3. In addition, bi-allelic inactivation of PALB2 was significantly associated with high LST scores. Our findings suggest that the identification of bi-allelic PALB2 inactivation in PALB2-associated BCs is required for the personalization of HR-directed therapies, such as platinum salts and/or PARP inhibitors, as the vast majority of PALB2-associated BCs without PALB2 bi-allelic inactivation lack genomic features of HRD.
  • Item
    Thumbnail Image
    Development and validation of a targeted gene sequencing panel for application to disparate cancers
    McCabe, MJ ; Gauthier, M-EA ; Chan, C-L ; Thompson, TJ ; De Sousa, SMC ; Puttick, C ; Grady, JP ; Gayevskiy, V ; Tao, J ; Ying, K ; Cipponi, A ; Deng, N ; Swarbrick, A ; Thomas, ML ; kConFab, ; Lord, RV ; Johns, AL ; Kohonen-Corish, M ; O'Toole, SA ; Clark, J ; Mueller, SA ; Gupta, R ; McCormack, AI ; Dinger, ME ; Cowley, MJ (Nature Publishing Group, 2019-11-19)
    Next generation sequencing has revolutionised genomic studies of cancer, having facilitated the development of precision oncology treatments based on a tumour's molecular profile. We aimed to develop a targeted gene sequencing panel for application to disparate cancer types with particular focus on tumours of the head and neck, plus test for utility in liquid biopsy. The final panel designed through Roche/Nimblegen combined 451 cancer-associated genes (2.01 Mb target region). 136 patient DNA samples were collected for performance and application testing. Panel sensitivity and precision were measured using well-characterised DNA controls (n = 47), and specificity by Sanger sequencing of the Aryl Hydrocarbon Receptor Interacting Protein (AIP) gene in 89 patients. Assessment of liquid biopsy application employed a pool of synthetic circulating tumour DNA (ctDNA). Library preparation and sequencing were conducted on Illumina-based platforms prior to analysis with our accredited (ISO15189) bioinformatics pipeline. We achieved a mean coverage of 395x, with sensitivity and specificity of >99% and precision of >97%. Liquid biopsy revealed detection to 1.25% variant allele frequency. Application to head and neck tumours/cancers resulted in detection of mutations aligned to published databases. In conclusion, we have developed an analytically-validated panel for application to cancers of disparate types with utility in liquid biopsy.
  • Item
    Thumbnail Image
    The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer
    Figlioli, G ; Bogliolo, M ; Catucci, I ; Caleca, L ; Viz Lasheras, S ; Pujol, R ; Kiiski, J ; Muranen, TA ; Barnes, DR ; Dennis, J ; Michailidou, K ; Bolla, MK ; Leslie, G ; Aalfs, CM ; Adank, MA ; Adlard, J ; Agata, S ; Cadoo, K ; Agnarsson, BA ; Ahearn, T ; Aittomaki, K ; Ambrosone, CB ; Andrews, L ; Anton-Culver, H ; Antonenkova, NN ; Arndt, V ; Arnold, N ; Aronson, KJ ; Arun, BK ; Asseryanis, E ; Auber, B ; Auvinen, P ; Azzollini, J ; Balmana, J ; Barkardottir, RB ; Barrowdale, D ; Barwell, J ; Freeman, LEB ; Beauparlant, CJ ; Beckmann, MW ; Behrens, S ; Benitez, J ; Berger, R ; Bermisheva, M ; Blanco, AM ; Blomqvist, C ; Bogdanova, N ; Bojesen, A ; Bojesen, SE ; Bonanni, B ; Borg, A ; Brady, AF ; Brauch, H ; Brenner, H ; Bruening, T ; Burwinkel, B ; Buys, SS ; Caldes, T ; Caliebe, A ; Caligo, MA ; Campa, D ; Campbell, IG ; Canzian, F ; Castelao, JE ; Chang-Claude, J ; Chanock, SJ ; Claes, KBM ; Clarke, CL ; Collavoli, A ; Conner, TA ; Cox, DG ; Cybulski, C ; Czene, K ; Daly, MB ; de la Hoya, M ; Devilee, P ; Diez, O ; Ding, YC ; Dite, GS ; Ditsch, N ; Domchek, SM ; Dorfling, CM ; dos-Santos-Silva, I ; Durda, K ; Dwek, M ; Eccles, DM ; Ekici, AB ; Eliassen, AH ; Ellberg, C ; Eriksson, M ; Evans, DG ; Fasching, PA ; Figueroa, J ; Flyger, H ; Foulkes, WD ; Friebel, TM ; Friedman, E ; Gabrielson, M ; Gaddam, P ; Gago-Dominguez, M ; Gao, C ; Gapstur, SM ; Garber, J ; Garcia-Closas, M ; Garcia-Saenz, JA ; Gaudet, MM ; Gayther, SA ; Giles, GG ; Glendon, G ; Godwin, AK ; Goldberg, MS ; Goldgar, DE ; Guenel, P ; Gutierrez-Barrera, AM ; Haeberle, L ; Haiman, CA ; Hakansson, N ; Hall, P ; Hamann, U ; Harrington, PA ; Hein, A ; Heyworth, J ; Hillemanns, P ; Hollestelle, A ; Hopper, JL ; Hosgood, HD ; Howell, A ; Hu, C ; Hulick, PJ ; Hunter, DJ ; Imyanitov, EN ; Isaacs, C ; Jakimovska, M ; Jakubowska, A ; James, P ; Janavicius, R ; Janni, W ; John, EM ; Jones, ME ; Jung, A ; Kaaks, R ; Karlan, BY ; Khusnutdinova, E ; Kitahara, CM ; Konstantopoulou, I ; Koutros, S ; Kraft, P ; Lambrechts, D ; Lazaro, C ; Le Marchand, L ; Lester, J ; Lesueur, F ; Lilyquist, J ; Loud, JT ; Lu, KH ; Luben, RN ; Lubinski, J ; Mannermaa, A ; Manoochehri, M ; Manoukian, S ; Margolin, S ; Martens, JWM ; Maurer, T ; Mavroudis, D ; Mebirouk, N ; Meindl, A ; Menon, U ; Miller, A ; Montagna, M ; Nathanson, KL ; Neuhausen, SL ; Newman, WG ; Nguyen-Dumont, T ; Nielsen, FC ; Nielsen, S ; Nikitina-Zake, L ; Offit, K ; Olah, E ; Olopade, O ; Olshan, AF ; Olson, JE ; Olsson, H ; Osorio, A ; Ottini, L ; Peissel, B ; Peixoto, A ; Peto, J ; Plaseska-Karanfilska, D ; Pocza, T ; Presneau, N ; Angel Pujana, M ; Punie, K ; Rack, B ; Rantala, J ; Rashid, MU ; Rau-Murthy, R ; Rennert, G ; Lejbkowicz, F ; Rhenius, V ; Romero, A ; Rookus, MA ; Ross, EA ; Rossing, M ; Rudaitis, V ; Ruebner, M ; Saloustros, E ; Sanden, K ; Santamarina, M ; Scheuner, MT ; Schmutzler, RK ; Schneider, M ; Scott, C ; Senter, L ; Shah, M ; Sharma, P ; Shu, X-O ; Simard, J ; Singer, CF ; Sohn, C ; Soucy, P ; Southey, MC ; Spinelli, JJ ; Steele, L ; Stoppa-Lyonnet, D ; Tapper, WJ ; Teixeira, MR ; Terry, MB ; Thomassen, M ; Thompson, J ; Thull, DL ; Tischkowitz, M ; Tollenaar, RAEM ; Torres, D ; Troester, MA ; Truong, T ; Tung, N ; Untch, M ; Vachon, CM ; van Rensburg, EJ ; van Veen, EM ; Vega, A ; Viel, A ; Wappenschmidt, B ; Weitzel, JN ; Wendt, C ; Wieme, G ; Wolk, A ; Yang, XR ; Zheng, W ; Ziogas, A ; Zorn, KK ; Dunning, AM ; Lush, M ; Wang, Q ; McGuffog, L ; Parsons, MT ; Pharoah, PDP ; Fostira, F ; Toland, AE ; Andrulis, IL ; Ramus, SJ ; Swerdlow, AJ ; Greene, MH ; Chung, WK ; Milne, RL ; Chenevix-Trench, G ; Doerk, T ; Schmidt, MK ; Easton, DF ; Radice, P ; Hahnen, E ; Antoniou, AC ; Couch, FJ ; Nevanlinna, H ; Surralles, J ; Peterlongo, P ; Balleine, R ; Baxter, R ; Braye, S ; Carpenter, J ; Dahlstrom, J ; Forbes, J ; Lee, CS ; Marsh, D ; Morey, A ; Pathmanathan, N ; Scott, R ; Simpson, P ; Spigelman, A ; Wilcken, N ; Yip, D ; Zeps, N ; Belotti, M ; Bertrand, O ; Birot, A-M ; Buecher, B ; Caputo, S ; Dupre, A ; Fourme, E ; Gauthier-Villars, M ; Golmard, L ; Le Mentec, M ; Moncoutier, V ; de Pauw, A ; Saule, C ; Boutry-Kryza, N ; Calender, A ; Giraud, S ; Leone, M ; Bressac-de-Paillerets, B ; Caron, O ; Guillaud-Bataille, M ; Bignon, Y-J ; Uhrhammer, N ; Bonadona, V ; Lasset, C ; Berthet, P ; Castera, L ; Vaur, D ; Bourdon, V ; Nogues, C ; Noguchi, T ; Popovici, C ; Remenieras, A ; Sobol, H ; Coupier, I ; Pujol, P ; Adenis, C ; Dumont, A ; Revillion, F ; Muller, D ; Barouk-Simonet, E ; Bonnet, F ; Bubien, V ; Longy, M ; Sevenet, N ; Gladieff, L ; Guimbaud, R ; Feillel, V ; Toulas, C ; Dreyfus, H ; Leroux, CD ; Peysselon, M ; Rebischung, C ; Legrand, C ; Baurand, A ; Bertolone, G ; Coron, F ; Faivre, L ; Jacquot, C ; Lizard, S ; Kientz, C ; Lebrun, M ; Prieur, F ; Fert-Ferrer, S ; Mari, V ; Venat-Bouvet, L ; Bezieau, S ; Delnatte, C ; Mortemousque, I ; Colas, C ; Coulet, F ; Soubrier, F ; Warcoin, M ; Bronner, M ; Sokolowska, J ; Collonge-Rame, M-A ; Damette, A ; Gesta, P ; Lallaoui, H ; Chiesa, J ; Molina-Gomes, D ; Ingster, O ; Manouvrier-Hanu, S ; Lejeune, S ; Aghmesheh, M ; Greening, S ; Amor, D ; Gattas, M ; Botes, L ; Buckley, M ; Friedlander, M ; Koehler, J ; Meiser, B ; Saleh, M ; Salisbury, E ; Trainer, A ; Tucker, K ; Antill, Y ; Dobrovic, A ; Fellows, A ; Fox, S ; Harris, M ; Nightingale, S ; Phillips, K ; Sambrook, J ; Thorne, H ; Armitage, S ; Arnold, L ; Kefford, R ; Kirk, J ; Rickard, E ; Bastick, P ; Beesley, J ; Hayward, N ; Spurdle, A ; Walker, L ; Beilby, J ; Saunders, C ; Bennett, I ; Blackburn, A ; Bogwitz, M ; Gaff, C ; Lindeman, G ; Pachter, N ; Scott, C ; Sexton, A ; Visvader, J ; Taylor, J ; Winship, I ; Brennan, M ; Brown, M ; French, J ; Edwards, S ; Burgess, M ; Burke, J ; Patterson, B ; Butow, P ; Culling, B ; Caldon, L ; Callen, D ; Chauhan, D ; Eisenbruch, M ; Heiniger, L ; Chauhan, M ; Christian, A ; Dixon, J ; Kidd, A ; Cohen, P ; Colley, A ; Fenton, G ; Crook, A ; Dickson, R ; Field, M ; Cui, J ; Cummings, M ; Dawson, S-J ; DeFazio, A ; Delatycki, M ; Dudding, T ; Edkins, T ; Farshid, G ; Flanagan, J ; Fong, P ; Forrest, L ; Gallego-Ortega, D ; George, P ; Gill, G ; Kollias, J ; Haan, E ; Hart, S ; Jenkins, M ; Hunt, C ; Lakhani, S ; Lipton, L ; Lobb, L ; Mann, G ; McLachlan, SA ; O'Connell, S ; O'Sullivan, S ; Pieper, E ; Robinson, B ; Saunus, J ; Scott, E ; Shelling, A ; Williams, R ; Young, MA (Springer Nature, 2019-11-01)
    Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM−/− patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors.
  • Item
    Thumbnail Image
    Evaluating the breast cancer predisposition role of rare variants in genes associated with low-penetrance breast cancer risk SNPs
    Li, N ; Rowley, SM ; Thompson, ER ; McInerny, S ; Devereux, L ; Amarasinghe, KC ; Zethoven, M ; Lupat, R ; Goode, D ; Li, J ; Trainer, AH ; Gorringe, KL ; James, PA ; Campbell, IG (BIOMED CENTRAL LTD, 2018-01-09)
    BACKGROUND: Genome-wide association studies (GWASs) have identified numerous single-nucleotide polymorphisms (SNPs) associated with small increases in breast cancer risk. Studies to date suggest that some SNPs alter the expression of the associated genes, which potentially mediates risk modification. On this basis, we hypothesised that some of these genes may be enriched for rare coding variants associated with a higher breast cancer risk. METHODS: The coding regions and exon-intron boundaries of 56 genes that have either been proposed by GWASs to be the regulatory targets of the SNPs and/or located < 500 kb from the risk SNPs were sequenced in index cases from 1043 familial breast cancer families that previously had negative test results for BRCA1 and BRCA2 mutations and 944 population-matched cancer-free control participants from an Australian population. Rare (minor allele frequency ≤ 0.001 in the Exome Aggregation Consortium and Exome Variant Server databases) loss-of-function (LoF) and missense variants were studied. RESULTS: LoF variants were rare in both the cases and control participants across all the candidate genes, with only 38 different LoF variants observed in a total of 39 carriers. For the majority of genes (n = 36), no LoF variants were detected in either the case or control cohorts. No individual gene showed a significant excess of LoF or missense variants in the cases compared with control participants. Among all candidate genes as a group, the total number of carriers with LoF variants was higher in the cases than in the control participants (26 cases and 13 control participants), as was the total number of carriers with missense variants (406 versus 353), but neither reached statistical significance (p = 0.077 and p = 0.512, respectively). The genes contributing most of the excess of LoF variants in the cases included TET2, NRIP1, RAD51B and SNX32 (12 cases versus 2 control participants), whereas ZNF283 and CASP8 contributed largely to the excess of missense variants (25 cases versus 8 control participants). CONCLUSIONS: Our data suggest that rare LoF and missense variants in genes associated with low-penetrance breast cancer risk SNPs may contribute some additional risk, but as a group these genes are unlikely to be major contributors to breast cancer heritability.