Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    IL-15 Preconditioning Augments CAR T Cell Responses to Checkpoint Blockade for Improved Treatment of Solid Tumors
    Giuffrida, L ; Sek, K ; Henderson, MA ; House, IG ; Lai, J ; Chen, AXY ; Todd, KL ; Petley, E ; Mardiana, S ; Todorovski, I ; Gruber, E ; Kelly, MJ ; Solomon, BJ ; Vervoort, SJ ; Johnstone, RW ; Parish, IA ; Neeson, PJ ; Kats, LM ; Darcy, PK ; Beavis, PA (CELL PRESS, 2020-11-04)
    Chimeric antigen receptor (CAR) T cell therapy has been highly successful in hematological malignancies leading to their US Food and Drug Administration (FDA) approval. However, the efficacy of CAR T cells in solid tumors is limited by tumor-induced immunosuppression, leading to the development of combination approaches, such as adjuvant programmed cell death 1 (PD-1) blockade. Current FDA-approved methods for generating CAR T cells utilize either anti-CD3 and interleukin (IL)-2 or anti-CD3/CD28 beads, which can generate a T cell product with an effector/exhausted phenotype. Whereas different cytokine preconditioning milieu, such as IL-7/IL-15, have been shown to promote T cell engraftment, the impact of this approach on CAR T cell responses to adjuvant immune-checkpoint blockade has not been assessed. In the current study, we reveal that the preconditioning of CAR T cells with IL-7/IL-15 increased CAR T cell responses to anti-PD-1 adjuvant therapy. This was associated with the emergence of an intratumoral CD8+CD62L+TCF7+IRF4- population that was highly responsive to anti-PD-1 therapy and mediated the vast majority of transcriptional and epigenetic changes in vivo following PD-1 blockade. Our data indicate that preservation of CAR T cells in a TCF7+ phenotype is crucial for their responsiveness to adjuvant immunotherapy approaches and should be a key consideration when designing clinical protocols.
  • Item
    No Preview Available
    Epigenetic reprogramming of plasmacytoid dendritic cells drives type I interferon-dependent differentiation of acute myeloid leukemias for therapeutic benefit
    Salmon, J ; Todorovski, I ; Vervoort, S ; Stanley, K ; Kearney, C ; Martelotto, L ; Rossello, F ; Semple, T ; Mir-Arnau, G ; Zethoven, M ; Bots, M ; Vidacs, E ; McArthur, K ; Gressier, E ; de Weerd, N ; Lichte, J ; Kelly, M ; Cluse, L ; Hogg, S ; Hertzog, P ; Kats, L ; de Carvalho, D ; Scheu, S ; Bedoui, S ; Kile, B ; Wei, A ; Dominguez, P ; Johnstone, R ( 2020-08-24)
    Pharmacological inhibition of epigenetic enzymes can have therapeutic benefit, particularly against hematological malignancies. While these agents can affect tumor cell growth and proliferation, recent studies have demonstrated that pharmacological de-regulation of epigenetic modifiers may additionally mediate anti-tumor immune responses. Here we discovered a novel mechanism of immune regulation through the inhibition of histone deacetylases (HDACs). In a genetically engineered model of t(8;21) AML, leukemia cell differentiation and therapeutic benefit mediated by the HDAC inhibitor panobinostat required activation of the type I interferon (IFN) signaling pathway. Plasmacytoid dendritic cells (pDCs) were identified as the cells producing type I IFN in response to panobinostat, through transcriptional activation of IFN genes concomitant with increased H3K27 acetylation at these loci. Depletion of pDCs abrogated panobinostat-mediated activation of type I IFN signaling in leukemia cells and impaired therapeutic efficacy, while combined treatment of panobinostat and recombinant IFNα improved therapeutic outcomes. These discoveries offer a new therapeutic approach for t(8;21) AML and demonstrate that epigenetic rewiring of pDCs enhances anti-tumor immunity, opening the possibility of exploiting this cell type as a new target for immunotherapy.
  • Item
    Thumbnail Image
    CDK13 cooperates with CDK12 to control global RNA polymerase II processivity
    Fan, Z ; Devlin, JR ; Hogg, SJ ; Doyle, MA ; Harrison, PF ; Todorovski, I ; Cluse, LA ; Knight, DA ; Sandow, JJ ; Gregory, G ; Fox, A ; Beilharz, TH ; Kwiatkowski, N ; Scott, NE ; Vidakovic, AT ; Kelly, GP ; Svejstrup, JQ ; Geyer, M ; Gray, NS ; Vervoort, SJ ; Johnstone, RW (AMER ASSOC ADVANCEMENT SCIENCE, 2020-04-01)
    The RNA polymerase II (POLII)-driven transcription cycle is tightly regulated at distinct checkpoints by cyclin-dependent kinases (CDKs) and their cognate cyclins. The molecular events underpinning transcriptional elongation, processivity, and the CDK-cyclin pair(s) involved remain poorly understood. Using CRISPR-Cas9 homology-directed repair, we generated analog-sensitive kinase variants of CDK12 and CDK13 to probe their individual and shared biological and molecular roles. Single inhibition of CDK12 or CDK13 induced transcriptional responses associated with cellular growth signaling pathways and/or DNA damage, with minimal effects on cell viability. In contrast, dual kinase inhibition potently induced cell death, which was associated with extensive genome-wide transcriptional changes including widespread use of alternative 3' polyadenylation sites. At the molecular level, dual kinase inhibition resulted in the loss of POLII CTD phosphorylation and greatly reduced POLII elongation rates and processivity. These data define substantial redundancy between CDK12 and CDK13 and identify both as fundamental regulators of global POLII processivity and transcription elongation.
  • Item
    Thumbnail Image
    CDK13 cooperates with CDK12 to control global RNA polymerase II processivity.
    Fan, Z ; Devlin, JR ; Hogg, SJ ; Doyle, MA ; Harrison, PF ; Todorovski, I ; Cluse, LA ; Knight, DA ; Sandow, JJ ; Gregory, G ; Fox, A ; Beilharz, TH ; Kwiatkowski, N ; Scott, NE ; Vidakovic, AT ; Kelly, GP ; Svejstrup, JQ ; Geyer, M ; Gray, NS ; Vervoort, SJ ; Johnstone, RW (AMER ASSOC ADVANCEMENT SCIENCE, 2020-05)
    The RNA polymerase II (POLII)-driven transcription cycle is tightly regulated at distinct checkpoints by cyclin-dependent kinases (CDKs) and their cognate cyclins. The molecular events underpinning transcriptional elongation, processivity, and the CDK-cyclin pair(s) involved remain poorly understood. Using CRISPR-Cas9 homology-directed repair, we generated analog-sensitive kinase variants of CDK12 and CDK13 to probe their individual and shared biological and molecular roles. Single inhibition of CDK12 or CDK13 induced transcriptional responses associated with cellular growth signaling pathways and/or DNA damage, with minimal effects on cell viability. In contrast, dual kinase inhibition potently induced cell death, which was associated with extensive genome-wide transcriptional changes including widespread use of alternative 3' polyadenylation sites. At the molecular level, dual kinase inhibition resulted in the loss of POLII CTD phosphorylation and greatly reduced POLII elongation rates and processivity. These data define substantial redundancy between CDK12 and CDK13 and identify both as fundamental regulators of global POLII processivity and transcription elongation.