Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    No Preview Available
    Quantitation of CMV Specific T-Cell Expansion Using T Cell Receptor Beta Locus Deep Sequencing to Identify Patients at Risk of Viral Complications
    Kuzich, JA ; Kankanige, Y ; Guinto, J ; Ryland, G ; McBean, M ; Thompson, E ; Wong, E ; Koldej, R ; Collins, J ; Westerman, D ; Ritchie, DS ; Blombery, P (ELSEVIER SCIENCE INC, 2020-03)
  • Item
    No Preview Available
    Immune recovery in patients with mantle cell lymphoma receiving long-term ibrutinib and venetoclax combination therapy
    Davis, JE ; Handunnetti, SM ; Ludford-Menting, M ; Sharpe, C ; Blombery, P ; Anderson, MA ; Roberts, AW ; Seymour, JF ; Tam, CS ; Ritchie, DS ; Koldej, RM (AMER SOC HEMATOLOGY, 2020-10-13)
    Combination venetoclax plus ibrutinib for the treatment of mantle cell lymphoma (MCL) has demonstrated efficacy in the relapsed or refractory setting; however, the long-term impact on patient immunology is unknown. In this study, changes in immune subsets of MCL patients treated with combination venetoclax and ibrutinib were assessed over a 4-year period. Multiparameter flow cytometry of peripheral blood mononuclear cells showed that ≥12 months of treatment resulted in alterations in the proportions of multiple immune subsets, most notably CD4+ and CD8+ effector and central memory T cells and natural killer cells, and normalization of T-cell cytokine production in response to T-cell receptor stimulation. Gene expression analysis identified upregulation of multiple myeloid genes (including S100 and cathepsin family members) and inflammatory pathways over 12 months. Four patients with deep responses stopped study drugs, resulting in restoration of normal immune subsets for all study parameters except myeloid gene/pathway expression, suggesting long-term combination venetoclax and ibrutinib irreversibly affects this population. Our findings demonstrate that long-term combination therapy is associated with immune recovery in MCL, which may allow responses to subsequent immunotherapies and suggests that this targeted therapy results in beneficial impacts on immunological recovery. This trial was registered at www.clinicaltrials.gov as #NCT02471391.
  • Item
    No Preview Available
    Differential effects of BTK inhibitors ibrutinib and zanubrutinib on NK-cell effector function in patients with mantle cell lymphoma
    Flinsenberg, TWH ; Tromedjo, CC ; Hu, N ; Liu, Y ; Guo, Y ; Thia, KYT ; Noori, T ; Song, X ; Aw Yeang, HX ; Tantalo, DG ; Handunnetti, S ; Seymour, JF ; Roberts, AW ; Ritchie, D ; Koldej, R ; Neeson, PJ ; Wang, L ; Trapani, JA ; Tam, CS ; Voskoboinik, I (FERRATA STORTI FOUNDATION, 2020-01-31)
  • Item
    Thumbnail Image
    Conventional Treatment for Multiple Myeloma Drives Premature Aging Phenotypes and Metabolic Dysfunction in T Cells
    Cooke, RE ; Quinn, KM ; Quach, H ; Harrison, S ; Prince, HM ; Koldej, R ; Ritchie, D (FRONTIERS MEDIA SA, 2020-09-03)
    New diagnoses of multiple myeloma (MM) tend to occur after the age of 60, by which time thymic output is severely reduced. As a consequence, lymphocyte recovery after lymphopenia-inducing anti-MM therapies relies on homeostatic proliferation of peripheral T cells rather than replenishment by new thymic emigrants. To assess lymphocyte recovery and phenotype in patients with newly diagnosed MM (NDMM) and relapsed/refractory MM (RRMM), we tracked CD4+ and CD8+ T cell populations at serial time points throughout treatment and compared them to age-matched healthy donors (HD). Anti-MM therapies and autologous stem cell transplant (ASCT) caused a permanent reduction in the CD4:8 ratio, a decrease in naïve CD4+ T cells, and an increase in effector memory T cells and PD1-expressing CD4+ T cells. Transcriptional profiling highlighted that genes associated with fatty acid β-oxidation were upregulated in T cells in RRMM, suggesting increased reliance on mitochondrial respiration. High mitochondrial mass was seen in all T cell subsets in RRMM but with relatively suppressed reactive oxygen species and mitochondrial membrane potential, indicating mitochondrial dysfunction. These findings highlight that anti-MM and ASCT therapies perturb the composition of the T cell compartment and drive substantial metabolic remodeling, which may affect the fitness of T cells for immunotherapies. This is particularly pertinent to chimeric antigen receptor (CAR)-T therapy, which might be more efficacious if T cells were stored prior to ASCT rather than at relapse.
  • Item
    Thumbnail Image
    Spontaneous onset and transplant models of the Vk*MYC mouse show immunological sequelae comparable to human multiple myeloma
    Cooke, RE ; Gherardin, NA ; Harrison, SJ ; Quach, H ; Godfrey, DI ; Prince, M ; Koldej, R ; Ritchie, DS (BIOMED CENTRAL LTD, 2016-09-06)
    BACKGROUND: The Vk*MYC transgenic and transplant mouse models of multiple myeloma (MM) are well established as a research tool for anti-myeloma drug discovery. However, little is known of the immune response in these models. Understanding the immunological relevance of these models is of increasing importance as immunotherapeutic drugs are developed against MM. METHODS: We set out to examine how cellular immunity is affected in Vk*MYC mouse models and compare that to the immunology of patients with newly diagnosed and relapsed/refractory MM. RESULTS: We found that there were significant immunological responses in mice developing either spontaneous (transgenic) or transplanted MM as a consequence of the degree of tumor burden. Particularly striking were the profound B cell lymphopenia and the expansion of CD8(+) effector memory T cells within the lymphocyte population that progressively developed with advancing disease burden, mirroring changes seen in human MM. High disease burden was also associated with increased inflammatory cytokine production by T lymphocytes, which is more fitting with relapsed/refractory MM in humans. CONCLUSIONS: These findings have important implications for the application of this mouse model in the development of MM immunotherapies. Trial registration LitVacc ANZCTR trial ID ACTRN12613000344796; RevLite ANZCTR trial ID NCT00482261.