Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    A multisite blinded study for the detection of BRAF mutations in formalin-fixed, paraffin-embedded malignant melanoma
    Richter, A ; Grieu, F ; Carrello, A ; Amanuel, B ; Namdarian, K ; Rynska, A ; Lucas, A ; Michael, V ; Bell, A ; Fox, SB ; Hewitt, CA ; Do, H ; McArthur, GA ; Wong, SQ ; Dobrovic, A ; Iacopetta, B (NATURE PORTFOLIO, 2013-04-15)
    Melanoma patients with BRAF mutations respond to treatment with vemurafenib, thus creating a need for accurate testing of BRAF mutation status. We carried out a blinded study to evaluate various BRAF mutation testing methodologies in the clinical setting. Formalin-fixed, paraffin-embedded melanoma samples were macrodissected before screening for mutations using Sanger sequencing, single-strand conformation analysis (SSCA), high resolution melting analysis (HRM) and competitive allele-specific TaqMan® PCR (CAST-PCR). Concordance of 100% was observed between the Sanger sequencing, SSCA and HRM techniques. CAST-PCR gave rapid and accurate results for the common V600E and V600K mutations, however additional assays are required to detect rarer BRAF mutation types found in 3-4% of melanomas. HRM and SSCA followed by Sanger sequencing are effective two-step strategies for the detection of BRAF mutations in the clinical setting. CAST-PCR was useful for samples with low tumour purity and may also be a cost-effective and robust method for routine diagnostics.
  • Item
    Thumbnail Image
    Sequence artefacts in a prospective series of formalin-fixed tumours tested for mutations in hotspot regions by massively parallel sequencing
    Wong, SQ ; Li, J ; Tan, AY-C ; Vedururu, R ; Pang, J-MB ; Do, H ; Ellul, J ; Doig, K ; Bell, A ; McArthur, GA ; Fox, SB ; Thomas, DM ; Fellowes, A ; Parisot, JP ; Dobrovic, A (BMC, 2014-05-13)
    BACKGROUND: Clinical specimens undergoing diagnostic molecular pathology testing are fixed in formalin due to the necessity for detailed morphological assessment. However, formalin fixation can cause major issues with molecular testing, as it causes DNA damage such as fragmentation and non-reproducible sequencing artefacts after PCR amplification. In the context of massively parallel sequencing (MPS), distinguishing true low frequency variants from sequencing artefacts remains challenging. The prevalence of formalin-induced DNA damage and its impact on molecular testing and clinical genomics remains poorly understood. METHODS: The Cancer 2015 study is a population-based cancer cohort used to assess the feasibility of mutational screening using MPS in cancer patients from Victoria, Australia. While blocks were formalin-fixed and paraffin-embedded in different anatomical pathology laboratories, they were centrally extracted for DNA utilising the same protocol, and run through the same MPS platform (Illumina TruSeq Amplicon Cancer Panel). The sequencing artefacts in the 1-10% and the 10-25% allele frequency ranges were assessed in 488 formalin-fixed tumours from the pilot phase of the Cancer 2015 cohort. All blocks were less than 2.5 years of age (mean 93 days). RESULTS: Consistent with the signature of DNA damage due to formalin fixation, many formalin-fixed samples displayed disproportionate levels of C>T/G>A changes in the 1-10% allele frequency range. Artefacts were less apparent in the 10-25% allele frequency range. Significantly, changes were inversely correlated with coverage indicating high levels of sequencing artefacts were associated with samples with low amounts of available amplifiable template due to fragmentation. The degree of fragmentation and sequencing artefacts differed between blocks sourced from different anatomical pathology laboratories. In a limited validation of potentially actionable low frequency mutations, a NRAS G12D mutation in a melanoma was shown to be a false positive. CONCLUSIONS: These findings indicate that DNA damage following formalin fixation remains a major challenge in laboratories working with MPS. Methodologies that assess, minimise or remove formalin-induced DNA damaged templates as part of MPS protocols will aid in the interpretation of genomic results leading to better patient outcomes.
  • Item
    Thumbnail Image
    Loss of CDKN2A expression is a frequent event in primary invasive melanoma and correlates with sensitivity to the CDK4/6 inhibitor PD0332991 in melanoma cell lines
    Young, RJ ; Waldeck, K ; Martin, C ; Foo, JH ; Cameron, DP ; Kirby, L ; Do, H ; Mitchell, C ; Cullinane, C ; Liu, W ; Fox, SB ; Dutton-Regester, K ; Hayward, NK ; Jene, N ; Dobrovic, A ; Pearson, RB ; Christensen, JG ; Randolph, S ; McArthur, GA ; Sheppard, KE (WILEY-BLACKWELL, 2014-07)
    We have investigated the potential for the p16-cyclin D-CDK4/6-retinoblastoma protein pathway to be exploited as a therapeutic target in melanoma. In a cohort of 143 patients with primary invasive melanoma, we used fluorescence in situ hybridization to detect gene copy number variations (CNVs) in CDK4, CCND1, and CDKN2A and immunohistochemistry to determine protein expression. CNVs were common in melanoma, with gain of CDK4 or CCND1 in 37 and 18% of cases, respectively, and hemizygous or homozygous loss of CDKN2A in 56%. Three-quarters of all patients demonstrated a CNV in at least one of the three genes. The combination of CCND1 gain with either a gain of CDK4 and/or loss of CDKN2A was associated with poorer melanoma-specific survival. In 47 melanoma cell lines homozygous loss, methylation or mutation of CDKN2A gene or loss of protein (p16(INK) (4A) ) predicted sensitivity to the CDK4/6 inhibitor PD0332991, while RB1 loss predicted resistance.