Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Gene expression profiling identifies activated growth factor signaling in poor prognosis (Luminal-B) estrogen receptor positive breast cancer
    Loi, S ; Sotiriou, C ; Haibe-Kains, B ; Lallemand, F ; Conus, NM ; Piccart, MJ ; Speed, TP ; McArthur, GA (BMC, 2009-06-24)
    BACKGROUND: Within estrogen receptor-positive breast cancer (ER+ BC), the expression levels of proliferation-related genes can define two clinically distinct molecular subtypes. When treated with adjuvant tamoxifen, those ER+ BCs that are lowly proliferative have a good prognosis (luminal-A subtype), however the clinical outcome of those that are highly proliferative is poor (luminal-B subtype). METHODS: To investigate the biological basis for these observations, gene set enrichment analysis (GSEA) was performed using microarray data from 246 ER+ BC samples from women treated with adjuvant tamoxifen monotherapy. To create an in vitro model of growth factor (GF) signaling activation, MCF-7 cells were treated with heregulin (HRG), an HER3 ligand. RESULTS: We found that a gene set linked to GF signaling was significantly enriched in the luminal-B tumors, despite only 10% of samples over-expressing HER2 by immunohistochemistry. To determine the biological significance of this observation, MCF-7 cells were treated with HRG. These cells displayed phosphorylation of HER2/3 and downstream ERK and S6. Treatment with HRG overcame tamoxifen-induced cell cycle arrest with higher S-phase fraction and increased anchorage independent colony formation. Gene expression profiles of MCF-7 cells treated with HRG confirmed enrichment of the GF signaling gene set and a similar proliferative signature observed in human ER+ BCs resistant to tamoxifen. CONCLUSION: These data demonstrate that activation of GF signaling pathways, independent of HER2 over-expression, could be contributing to the poor prognosis of the luminal-B ER+ BC subtype.
  • Item
    Thumbnail Image
    UBF levels determine the number of active ribosomal RNA genes in mammals
    Sanij, E ; Poortinga, G ; Sharkey, K ; Hung, S ; Holloway, TP ; Quin, J ; Robb, E ; Wong, LH ; Thomas, WG ; Stefanovsky, V ; Moss, T ; Rothblum, L ; Hannan, KM ; McArthur, GA ; Pearson, RB ; Hannan, RD (ROCKEFELLER UNIV PRESS, 2008-12-29)
    In mammals, the mechanisms regulating the number of active copies of the approximately 200 ribosomal RNA (rRNA) genes transcribed by RNA polymerase I are unclear. We demonstrate that depletion of the transcription factor upstream binding factor (UBF) leads to the stable and reversible methylation-independent silencing of rRNA genes by promoting histone H1-induced assembly of transcriptionally inactive chromatin. Chromatin remodeling is abrogated by the mutation of an extracellular signal-regulated kinase site within the high mobility group box 1 domain of UBF1, which is required for its ability to bend and loop DNA in vitro. Surprisingly, rRNA gene silencing does not reduce net rRNA synthesis as transcription from remaining active genes is increased. We also show that the active rRNA gene pool is not static but decreases during differentiation, correlating with diminished UBF expression. Thus, UBF1 levels regulate active rRNA gene chromatin during growth and differentiation.
  • Item
    Thumbnail Image
    Identification of Functional Networks of Estrogen- and c-Myc-Responsive Genes and Their Relationship to Response to Tamoxifen Therapy in Breast Cancer
    Musgrove, EA ; Sergio, CM ; Loi, S ; Inman, CK ; Anderson, LR ; Alles, MC ; Pinese, M ; Caldon, CE ; Schuette, J ; Gardiner-Garden, M ; Ormandy, CJ ; McArthur, G ; Butt, AJ ; Sutherland, RL ; Hotchin, N (PUBLIC LIBRARY SCIENCE, 2008-08-20)
    BACKGROUND: Estrogen is a pivotal regulator of cell proliferation in the normal breast and breast cancer. Endocrine therapies targeting the estrogen receptor are effective in breast cancer, but their success is limited by intrinsic and acquired resistance. METHODOLOGY/PRINCIPAL FINDINGS: With the goal of gaining mechanistic insights into estrogen action and endocrine resistance, we classified estrogen-regulated genes by function, and determined the relationship between functionally-related genesets and the response to tamoxifen in breast cancer patients. Estrogen-responsive genes were identified by transcript profiling of MCF-7 breast cancer cells. Pathway analysis based on functional annotation of these estrogen-regulated genes identified gene signatures with known or predicted roles in cell cycle control, cell growth (i.e. ribosome biogenesis and protein synthesis), cell death/survival signaling and transcriptional regulation. Since inducible expression of c-Myc in antiestrogen-arrested cells can recapitulate many of the effects of estrogen on molecular endpoints related to cell cycle progression, the estrogen-regulated genes that were also targets of c-Myc were identified using cells inducibly expressing c-Myc. Selected genes classified as estrogen and c-Myc targets displayed similar levels of regulation by estrogen and c-Myc and were not estrogen-regulated in the presence of siMyc. Genes regulated by c-Myc accounted for 50% of all acutely estrogen-regulated genes but comprised 85% (110/129 genes) in the cell growth signature. siRNA-mediated inhibition of c-Myc induction impaired estrogen regulation of ribosome biogenesis and protein synthesis, consistent with the prediction that estrogen regulates cell growth principally via c-Myc. The 'cell cycle', 'cell growth' and 'cell death' gene signatures each identified patients with an attenuated response in a cohort of 246 tamoxifen-treated patients. In multivariate analysis the cell death signature was predictive independent of the cell cycle and cell growth signatures. CONCLUSIONS/SIGNIFICANCE: These functionally-based gene signatures can stratify patients treated with tamoxifen into groups with differing outcome, and potentially identify distinct mechanisms of tamoxifen resistance.