Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 32
  • Item
    Thumbnail Image
    Long term, continuous exposure to panobinostat induces terminal differentiation and long term survival in the TH-MYCN neuroblastoma mouse model
    Waldeck, K ; Cullinane, C ; Ardley, K ; Shortt, J ; Martin, B ; Tothill, RW ; Li, J ; Johnstone, RW ; McArthur, GA ; Hicks, RJ ; Wood, PJ (WILEY, 2016-07-01)
    Neuroblastoma is the most common extra-cranial malignancy in childhood and accounts for ∼15% of childhood cancer deaths. Amplification of MYCN in neuroblastoma is associated with aggressive disease and predicts for poor prognosis. Novel therapeutic approaches are therefore essential to improving patient outcomes in this setting. The histone deacetylases are known to interact with N-Myc and regulate numerous cellular processes via epigenetic modulation, including differentiation. In this study, we used the TH-MYCN mouse model of neuroblastoma to investigate the antitumor activity of the pan-HDAC inhibitor, panobinostat. In particular we sought to explore the impact of long term, continuous panobinostat exposure on the epigenetically driven differentiation process. Continuous treatment of tumor bearing TH-MYCN transgenic mice with panobinostat for nine weeks led to a significant improvement in survival as compared with mice treated with panobinostat for a three-week period. Panobinostat induced rapid tumor regression with no regrowth observed following a nine-week treatment period. Initial tumor response was associated with apoptosis mediated via upregulation of BMF and BIM. The process of terminal differentiation of neuroblastoma into benign ganglioneuroma, with a characteristic increase in S100 expression and reduction of N-Myc expression, occurred following prolonged exposure to the drug. RNA-sequencing analysis of tumors from treated animals confirmed significant upregulation of gene pathways associated with apoptosis and differentiation. Together our data demonstrate the potential of panobinostat as a novel therapeutic strategy for high-risk neuroblastoma patients.
  • Item
    Thumbnail Image
    Palbociclib synergizes with BRAF and MEK inhibitors in treatment naive melanoma but not after the development of BRAF inhibitor resistance
    Martin, CA ; Cullinane, C ; Kirby, L ; Abuhammad, S ; Lelliott, EJ ; Waldeck, K ; Young, RJ ; Brajanovski, N ; Cameron, DP ; Walker, R ; Sanij, E ; Poortinga, G ; Hannan, RD ; Pearson, RB ; Hicks, RJ ; McArthur, GA ; Sheppard, KE (WILEY, 2018-05-15)
    Increased CDK4 activity occurs in the majority of melanomas and CDK4/6 inhibitors in combination with BRAF and MEK inhibitors are currently in clinical trials for the treatment of melanoma. We hypothesize that the timing of the addition of CDK4/6 inhibitors to the current BRAF and MEK inhibitor regime will impact on the efficacy of this triplet drug combination. The efficacy of BRAF, MEK and CDK4/6 inhibitors as single agents and in combination was assessed in human BRAF mutant cell lines that were treatment naïve, BRAF inhibitor tolerant or had acquired resistance to BRAF inhibitors. Xenograft studies were then performed to test the in vivo efficacy of the BRAF and CDK4/6 inhibitor combination. Melanoma cells that had developed early reversible tolerance or acquired resistance to BRAF inhibition remained sensitive to palbociclib. In drug-tolerant cells, the efficacy of the combination of palbociclib with BRAF and/or MEK inhibitors was equivalent to single agent palbociclib. Similarly, acquired BRAF inhibitor resistance cells lost efficacy to the palbociclib and BRAF combination. In contrast, upfront treatment of melanoma cells with palbociclib in combination with BRAF and/or MEK inhibitors induced either cell death or senescence and was superior to a BRAF plus MEK inhibitor combination. In vivo palbociclib plus BRAF inhibitor induced rapid and sustained tumor regression without the development of therapy resistance. In summary, upfront dual targeting of CDK4/6 and mutant BRAF signaling enables tumor cells to evade resistance to monotherapy and is required for robust and sustained tumor regression. Melanoma patients whose tumors have acquired resistance to BRAF inhibition are less likely to have favorable responses to subsequent treatment with the triplet combination of BRAF, MEK and CDK4/6 inhibitors.
  • Item
    Thumbnail Image
    A multisite blinded study for the detection of BRAF mutations in formalin-fixed, paraffin-embedded malignant melanoma
    Richter, A ; Grieu, F ; Carrello, A ; Amanuel, B ; Namdarian, K ; Rynska, A ; Lucas, A ; Michael, V ; Bell, A ; Fox, SB ; Hewitt, CA ; Do, H ; McArthur, GA ; Wong, SQ ; Dobrovic, A ; Iacopetta, B (NATURE PORTFOLIO, 2013-04-15)
    Melanoma patients with BRAF mutations respond to treatment with vemurafenib, thus creating a need for accurate testing of BRAF mutation status. We carried out a blinded study to evaluate various BRAF mutation testing methodologies in the clinical setting. Formalin-fixed, paraffin-embedded melanoma samples were macrodissected before screening for mutations using Sanger sequencing, single-strand conformation analysis (SSCA), high resolution melting analysis (HRM) and competitive allele-specific TaqMan® PCR (CAST-PCR). Concordance of 100% was observed between the Sanger sequencing, SSCA and HRM techniques. CAST-PCR gave rapid and accurate results for the common V600E and V600K mutations, however additional assays are required to detect rarer BRAF mutation types found in 3-4% of melanomas. HRM and SSCA followed by Sanger sequencing are effective two-step strategies for the detection of BRAF mutations in the clinical setting. CAST-PCR was useful for samples with low tumour purity and may also be a cost-effective and robust method for routine diagnostics.
  • Item
    Thumbnail Image
    c-MYC coordinately regulates ribosomal gene chromatin remodeling and Pol I availability during granulocyte differentiation
    Poortinga, G ; Wall, M ; Sanij, E ; Siwicki, K ; Ellul, J ; Brown, D ; Holloway, TP ; Hannan, RD ; McArthur, GA (OXFORD UNIV PRESS, 2011-04)
    Loss of c-MYC is required for downregulation of ribosomal RNA (rRNA) gene (rDNA) transcription by RNA Polymerase I (Pol I) during granulocyte differentiation. Here, we demonstrate a robust reduction of Pol I loading onto rDNA that along with a depletion of the MYC target gene upstream binding factor (UBF) and a switch from epigenetically active to silent rDNA accompanies this MYC reduction. We hypothesized that MYC may coordinate these mechanisms via direct regulation of multiple components of the Pol I transcription apparatus. Using gene expression arrays we identified a 'regulon' of Pol I factors that are both downregulated during differentiation and reinduced in differentiated granulocytes upon activation of the MYC-ER transgene. This regulon includes the novel c-MYC target genes RRN3 and POLR1B. Although enforced MYC expression during granulocyte differentiation was sufficient to increase the number of active rRNA genes, its activation in terminally differentiated cells did not alter the active to inactive gene ratio despite increased rDNA transcription. Thus, c-MYC dynamically controls rDNA transcription during granulocytic differentiation through the orchestrated transcriptional regulation of core Pol I factors and epigenetic modulation of number of active rRNA genes.
  • Item
    Thumbnail Image
    Targeted-capture massively-parallel sequencing enables robust detection of clinically informative mutations from formalin-fixed tumours
    Wong, SQ ; Li, J ; Salemi, R ; Sheppard, KE ; Do, H ; Tothill, RW ; McArthur, GA ; Dobrovic, A (NATURE PORTFOLIO, 2013-12-13)
    Massively parallel sequencing offers the ability to interrogate a tumour biopsy for multiple mutational changes. For clinical samples, methodologies must enable maximal extraction of available sequence information from formalin-fixed and paraffin-embedded (FFPE) material. We assessed the use of targeted capture for mutation detection in FFPE DNA. The capture probes targeted the coding region of all known kinase genes and selected oncogenes and tumour suppressor genes. Seven melanoma cell lines and matching FFPE xenograft DNAs were sequenced. An informatics pipeline was developed to identify variants and contaminating mouse reads. Concordance of 100% was observed between unfixed and formalin-fixed for reported COSMIC variants including BRAF V600E. mutations in genes not conventionally screened including ERBB4, ATM, STK11 and CDKN2A were readily detected. All regions were adequately covered with independent reads regardless of GC content. This study indicates that hybridisation capture is a robust approach for massively parallel sequencing of FFPE samples.
  • Item
    Thumbnail Image
    Pnenotype switching in melanoma: implications for progression and therapy
    Li, FZ ; Dhillon, AS ; Anderson, RL ; McArthur, G ; Ferrao, PT (FRONTIERS MEDIA SA, 2015-02-13)
    Epithelial-mesenchymal transition (EMT) is a key process associated with the progression of epithelial cancers to metastatic disease. In melanoma, a similar process of phenotype switching has been reported and EMT-related genes have been implicated in promotion to a metastatic state. This review examines recent research on the role of signaling pathways and transcription factors regulating EMT-like processes in melanoma and their association with response to therapy in patients, especially response to BRAF inhibition, which is initially effective but limited by development of resistance and subsequent progression. We highlight studies implicating specific roles of various receptor tyrosine kinases (RTKs) in advancing melanoma progression by conferring a proliferative advantage and through promoting invasive phenotypes and metastasis. We also review the current knowledge of the mechanisms underlying resistance to BRAF inhibition and the potential role of melanoma phenotype switching in this process. In particular, we discuss how these important new insights may significantly enhance our ability to predict patterns of melanoma progression during treatment, and may facilitate rational development of combination therapies in the future.
  • Item
    Thumbnail Image
    Sequence artefacts in a prospective series of formalin-fixed tumours tested for mutations in hotspot regions by massively parallel sequencing
    Wong, SQ ; Li, J ; Tan, AY-C ; Vedururu, R ; Pang, J-MB ; Do, H ; Ellul, J ; Doig, K ; Bell, A ; McArthur, GA ; Fox, SB ; Thomas, DM ; Fellowes, A ; Parisot, JP ; Dobrovic, A (BMC, 2014-05-13)
    BACKGROUND: Clinical specimens undergoing diagnostic molecular pathology testing are fixed in formalin due to the necessity for detailed morphological assessment. However, formalin fixation can cause major issues with molecular testing, as it causes DNA damage such as fragmentation and non-reproducible sequencing artefacts after PCR amplification. In the context of massively parallel sequencing (MPS), distinguishing true low frequency variants from sequencing artefacts remains challenging. The prevalence of formalin-induced DNA damage and its impact on molecular testing and clinical genomics remains poorly understood. METHODS: The Cancer 2015 study is a population-based cancer cohort used to assess the feasibility of mutational screening using MPS in cancer patients from Victoria, Australia. While blocks were formalin-fixed and paraffin-embedded in different anatomical pathology laboratories, they were centrally extracted for DNA utilising the same protocol, and run through the same MPS platform (Illumina TruSeq Amplicon Cancer Panel). The sequencing artefacts in the 1-10% and the 10-25% allele frequency ranges were assessed in 488 formalin-fixed tumours from the pilot phase of the Cancer 2015 cohort. All blocks were less than 2.5 years of age (mean 93 days). RESULTS: Consistent with the signature of DNA damage due to formalin fixation, many formalin-fixed samples displayed disproportionate levels of C>T/G>A changes in the 1-10% allele frequency range. Artefacts were less apparent in the 10-25% allele frequency range. Significantly, changes were inversely correlated with coverage indicating high levels of sequencing artefacts were associated with samples with low amounts of available amplifiable template due to fragmentation. The degree of fragmentation and sequencing artefacts differed between blocks sourced from different anatomical pathology laboratories. In a limited validation of potentially actionable low frequency mutations, a NRAS G12D mutation in a melanoma was shown to be a false positive. CONCLUSIONS: These findings indicate that DNA damage following formalin fixation remains a major challenge in laboratories working with MPS. Methodologies that assess, minimise or remove formalin-induced DNA damaged templates as part of MPS protocols will aid in the interpretation of genomic results leading to better patient outcomes.
  • Item
    Thumbnail Image
    A First-Time-In-Human Phase I Clinical Trial of Bispecific Antibody-Targeted, Paclitaxel-Packaged Bacterial Minicells
    Solomon, BJ ; Desai, J ; Rosenthal, M ; McArthur, GA ; Pattison, ST ; Pattison, SL ; MacDiarmid, J ; Brahmbhatt, H ; Scott, AM ; Rosell, R (PUBLIC LIBRARY SCIENCE, 2015-12-11)
    BACKGROUND: We have harnessed a novel biological system, the bacterial minicell, to deliver cancer therapeutics to cancer cells. Preclinical studies showed that epidermal growth factor receptor (EGFR)-targeted, paclitaxel-loaded minicells (EGFRminicellsPac) have antitumor effects in xenograft models. To examine the safety of the minicell delivery system, we initiated a first-time-in-human, open-label, phase I clinical study of EGFRminicellsPac in patients with advanced solid tumors. METHODOLOGY: Patients received 5 weekly infusions followed by a treatment free week. Seven dose levels (1x108, 1x109, 3x109, 1x1010, 1.5x1010, 2x1010, 5x1010) were evaluated using a 3+3 dose-escalation design. Primary objectives were safety, tolerability and determination of the maximum tolerated dose. Secondary objectives were assessment of immune/inflammatory responses and antitumor activity. PRINCIPAL FINDINGS: Twenty eight patients were enrolled, 22 patients completed at least one cycle of EGFRminicellsPac; 6 patients did not complete a cycle due to rapidly progressive disease. A total of 236 doses was delivered over 42 cycles, with a maximum of 45 doses administered to a single patient. Most common treatment-related adverse events were rigors and pyrexia. No deaths resulted from treatment-related adverse events and the maximum tolerated dose was defined as 1x1010 EGFRminicellsPac. Surprisingly, only a mild self-limiting elevation in the inflammatory cytokines IL-6, IL-8 and TNFα and anti-inflammatory IL-10 was observed. Anti-LPS antibody titers peaked by dose 3 and were maintained at that level despite repeat dosing with the bacterially derived minicells. Ten patients (45%; n = 22) achieved stable disease as their best response. CONCLUSIONS/SIGNIFICANCE: This is the first study in humans of a novel biological system that can provide targeted delivery of a range of chemotherapeutic drugs to solid tumor cells. Bispecific antibody-targeted minicells, packaged with the chemotherapeutic paclitaxel, were shown to be safe in patients with advanced solid tumors with modest clinical efficacy observed. Further study in Phase II trials is planned. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry ACTRN12609000672257.
  • Item
    Thumbnail Image
    Targeting activating mutations of EZH2 leads to potent cell growth inhibition in human melanoma by derepression of tumor suppressor genes
    Tiffen, JC ; Gunatilake, D ; Gallagher, SJ ; Gowrishankar, K ; Heinemann, A ; Cullinane, C ; Dutton-Regester, K ; Pupo, GM ; Strbenac, D ; Yang, JY ; Madore, J ; Mann, GJ ; Hayward, NK ; McArthur, GA ; Filipp, FV ; Hersey, P (IMPACT JOURNALS LLC, 2015-09-29)
    The epigenetic modifier EZH2 is part of the polycomb repressive complex that suppresses gene expression via histone methylation. Activating mutations in EZH2 are found in a subset of melanoma that contributes to disease progression by inactivating tumor suppressor genes. In this study we have targeted EZH2 with a specific inhibitor (GSK126) or depleted EZH2 protein by stable shRNA knockdown. We show that inhibition of EZH2 has potent effects on the growth of both wild-type and EZH2 mutant human melanoma in vitro particularly in cell lines harboring the EZH2Y646 activating mutation. This was associated with cell cycle arrest, reduced proliferative capacity in both 2D and 3D culture systems, and induction of apoptosis. The latter was caspase independent and mediated by the release of apoptosis inducing factor (AIFM1) from mitochondria. Gene expression arrays showed that several well characterized tumor suppressor genes were reactivated by EZH2 inhibition. This included activating transcription factor 3 (ATF3) that was validated as an EZH2 target gene by ChIP-qPCR. These results emphasize a critical role for EZH2 in the proliferation and viability of melanoma and highlight the potential for targeted therapy against EZH2 in treatment of patients with melanoma.
  • Item
    Thumbnail Image
    Agonist immunotherapy restores T cell function following MEK inhibition improving efficacy in breast cancer
    Dushyanthen, S ; Teo, ZL ; Caramia, F ; Savas, P ; Mintoff, CP ; Virassamy, B ; Henderson, MA ; Luen, SJ ; Mansour, M ; Kershaw, MH ; Trapani, JA ; Neeson, PJ ; Salgado, R ; McArthur, GA ; Balko, JM ; Beavis, PA ; Darcy, PK ; Loi, S (NATURE PUBLISHING GROUP, 2017-09-19)
    The presence of tumor-infiltrating lymphocytes in triple-negative breast cancers is correlated with improved outcomes. Ras/MAPK pathway activation is associated with significantly lower levels of tumor-infiltrating lymphocytes in triple-negative breast cancers and while MEK inhibition can promote recruitment of tumor-infiltrating lymphocytes to the tumor, here we show that MEK inhibition adversely affects early onset T-cell effector function. We show that α-4-1BB and α-OX-40 T-cell agonist antibodies can rescue the adverse effects of MEK inhibition on T cells in both mouse and human T cells, which results in augmented anti-tumor effects in vivo. This effect is dependent upon increased downstream p38/JNK pathway activation. Taken together, our data suggest that although Ras/MAPK pathway inhibition can increase tumor immunogenicity, the negative impact on T-cell activity is functionally important. This undesirable impact is effectively prevented by combination with T-cell immune agonist immunotherapies resulting in superior therapeutic efficacy.MEK inhibition in breast cancer is associated with increased tumour infiltrating lymphocytes (TILs), however, MAPK activity is required for T cells function. Here the authors show that TILs activity following MEK inhibition can be enhanced by agonist immunotherapy resulting in synergic therapeutic effects.