Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    No Preview Available
    Long-Term Outcomes of TROG 13.01 SAFRON II Randomized Trial of Single- Versus Multifraction Stereotactic Ablative Body Radiotherapy for Pulmonary Oligometastases
    Siva, S ; Sakyanun, P ; Mai, T ; Wong, W ; Lim, A ; Ludbrook, J ; Bettington, C ; Rezo, A ; Pryor, D ; Hardcastle, N ; Kron, T ; Higgs, B ; Le, H ; Skala, M ; Gill, S ; Eade, T ; Awad, R ; Sasso, G ; Vinod, S ; Montgomery, R ; Ball, D ; Bressel, M (LIPPINCOTT WILLIAMS & WILKINS, 2023-07-01)
    Clinical trials frequently include multiple end points that mature at different times. The initial report, typically based on the primary end point, may be published when key planned co-primary or secondary analyses are not yet available. Clinical Trial Updates provide an opportunity to disseminate additional results from studies, published in JCO or elsewhere, for which the primary end point has already been reported.In a randomized phase II clinical trial, the Trans Tasman Radiation Oncology Group compared single- versus multifraction stereotactic ablative body radiotherapy (SABR) in 90 patients with 133 oligometastases to the lung. The study found no differences in safety, efficacy, systemic immunogenicity, or survival between arms, with single-fraction SABR picked as the winner on the basis of cost-effectiveness. In this article, we report the final updated survival outcome analysis. The protocol mandated no concurrent or post-therapy systemic therapy until progression. Modified disease-free survival (mDFS) was defined as any progression not addressable by local therapy, or death. At a median follow-up of 5.4 years, the 3- and 5-year estimates for overall survival (OS) were 70% (95% CI, 59 to 78) and 51% (95% CI, 39 to 61). There were no significant differences between the multi- and single-fraction arms for OS (hazard ratio [HR], 1.1 [95% CI, 0.6 to 2.0]; P = .81). The 3- and 5-year estimates for disease-free survival were 24% (95% CI, 16 to 33) and 20% (95% CI, 13 to 29), with no differences between arms (HR, 1.0 [95% CI, 0.6 to 1.6]; P = .92). The 3- and 5-year estimates for mDFS were 39% (95% CI, 29 to 49) and 34% (95% CI, 24 to 44), with no differences between arms (HR, 1.0 [95% CI, 0.6 to 1.8]; P = .90). In this patient population, where patients receive SABR in lieu of systemic therapy, one-in-three patients are alive without disease in the long term. There were no differences in outcomes by fractionation schedule.
  • Item
    Thumbnail Image
    Predicting muscle loss during lung cancer treatment (PREDICT): protocol for a mixed methods prospective study
    Kiss, NK ; Denehy, L ; Edbrooke, L ; Prado, CM ; Ball, D ; Siva, S ; Abbott, G ; Ugalde, A ; Fraser, SF ; Everitt, S ; Hardcastle, N ; Wirth, A ; Daly, RM (BMJ PUBLISHING GROUP, 2021-09)
    INTRODUCTION: Low muscle mass and low muscle attenuation (radiodensity), reflecting increased muscle adiposity, are prevalent muscle abnormalities in people with lung cancer receiving curative intent chemoradiation therapy (CRT) or radiation therapy (RT). Currently, there is a limited understanding of the magnitude, determinants and clinical significance of these muscle abnormalities in the lung cancer CRT/RT population. The primary objective of this study is to identify the predictors of muscle abnormalities (low muscle mass and muscle attenuation) and their depletion over time in people with lung cancer receiving CRT/RT. Secondary objectives are to assess the magnitude of change in these parameters and their association with health-related quality of life, treatment completion, toxicities and survival. METHODS AND ANALYSIS: Patients diagnosed with lung cancer and planned for treatment with CRT/RT are invited to participate in this prospective observational study, with a target of 120 participants. The impact and predictors of muscle abnormalities (assessed via CT at the third lumbar vertebra) prior to and 2 months post CRT/RT on the severity of treatment toxicities, treatment completion and survival will be assessed by examining the following variables: demographic and clinical factors, weight loss, malnutrition, muscle strength, physical performance, energy and protein intake, physical activity and sedentary time, risk of sarcopenia (Strength, Assistance in walking, Rise from a chair, Climb stairs, Falls history (SARC-F) score alone and with calf-circumference) and systemic inflammation. A sample of purposively selected participants with muscle abnormalities will be invited to take part in semistructured interviews to understand their ability to cope with treatment and explore preference for treatment strategies focused on nutrition and exercise. ETHICS AND DISSEMINATION: The PREDICT study received ethics approval from the Human Research Ethics Committee at Peter MacCallum Cancer Centre (HREC/53147/PMCC-2019) and Deakin University (2019-320). Findings will be disseminated through peer review publications and conference presentations.
  • Item
    Thumbnail Image
    A Deep Learning Model to Automate Skeletal Muscle Area Measurement on Computed Tomography Images
    Amarasinghe, KC ; Lopes, J ; Beraldo, J ; Kiss, N ; Bucknell, N ; Everitt, S ; Jackson, P ; Litchfield, C ; Denehy, L ; Blyth, BJ ; Siva, S ; MacManus, M ; Ball, D ; Li, J ; Hardcastle, N (FRONTIERS MEDIA SA, 2021-05-07)
    BACKGROUND: Muscle wasting (Sarcopenia) is associated with poor outcomes in cancer patients. Early identification of sarcopenia can facilitate nutritional and exercise intervention. Cross-sectional skeletal muscle (SM) area at the third lumbar vertebra (L3) slice of a computed tomography (CT) image is increasingly used to assess body composition and calculate SM index (SMI), a validated surrogate marker for sarcopenia in cancer. Manual segmentation of SM requires multiple steps, which limits use in routine clinical practice. This project aims to develop an automatic method to segment L3 muscle in CT scans. METHODS: Attenuation correction CTs from full body PET-CT scans from patients enrolled in two prospective trials were used. The training set consisted of 66 non-small cell lung cancer (NSCLC) patients who underwent curative intent radiotherapy. An additional 42 NSCLC patients prescribed curative intent chemo-radiotherapy from a second trial were used for testing. Each patient had multiple CT scans taken at different time points prior to and post- treatment (147 CTs in the training and validation set and 116 CTs in the independent testing set). Skeletal muscle at L3 vertebra was manually segmented by two observers, according to the Alberta protocol to serve as ground truth labels. This included 40 images segmented by both observers to measure inter-observer variation. An ensemble of 2.5D fully convolutional neural networks (U-Nets) was used to perform the segmentation. The final layer of U-Net produced the binary classification of the pixels into muscle and non-muscle area. The model performance was calculated using Dice score and absolute percentage error (APE) in skeletal muscle area between manual and automated contours. RESULTS: We trained five 2.5D U-Nets using 5-fold cross validation and used them to predict the contours in the testing set. The model achieved a mean Dice score of 0.92 and an APE of 3.1% on the independent testing set. This was similar to inter-observer variation of 0.96 and 2.9% for mean Dice and APE respectively. We further quantified the performance of sarcopenia classification using computer generated skeletal muscle area. To meet a clinical diagnosis of sarcopenia based on Alberta protocol the model achieved a sensitivity of 84% and a specificity of 95%. CONCLUSIONS: This work demonstrates an automated method for accurate and reproducible segmentation of skeletal muscle area at L3. This is an efficient tool for large scale or routine computation of skeletal muscle area in cancer patients which may have applications on low quality CTs acquired as part of PET/CT studies for staging and surveillance of patients with cancer.
  • Item
    Thumbnail Image
    Single-arm prospective interventional study assessing feasibility of using gallium-68 ventilation and perfusion PET/CT to avoid functional lung in patients with stage III non-small cell lung cancer
    Bucknell, N ; Hardcastle, N ; Jackson, P ; Hofman, M ; Callahan, J ; Eu, P ; Iravani, A ; Lawrence, R ; Martin, O ; Bressel, M ; Woon, B ; Blyth, B ; MacManus, M ; Byrne, K ; Steinfort, D ; Kron, T ; Hanna, G ; Ball, D ; Siva, S (BMJ PUBLISHING GROUP, 2020)
    BACKGROUND: In the curative-intent treatment of locally advanced lung cancer, significant morbidity and mortality can result from thoracic radiation therapy. Symptomatic radiation pneumonitis occurs in one in three patients and can lead to radiation-induced fibrosis. Local failure occurs in one in three patients due to the lungs being a dose-limiting organ, conventionally restricting tumour doses to around 60 Gy. Functional lung imaging using positron emission tomography (PET)/CT provides a geographic map of regional lung function and preclinical studies suggest this enables personalised lung radiotherapy. This map of lung function can be integrated into Volumetric Modulated Arc Therapy (VMAT) radiotherapy planning systems, enabling conformal avoidance of highly functioning regions of lung, thereby facilitating increased doses to tumour while reducing normal tissue doses. METHODS AND ANALYSIS: This prospective interventional study will investigate the use of ventilation and perfusion PET/CT to identify highly functioning lung volumes and avoidance of these using VMAT planning. This single-arm trial will be conducted across two large public teaching hospitals in Australia. Twenty patients with stage III non-small cell lung cancer will be recruited. All patients enrolled will receive dose-escalated (69 Gy) functional avoidance radiation therapy. The primary endpoint is feasibility with this achieved if ≥15 out of 20 patients meet pre-defined feasibility criteria. Patients will be followed for 12 months post-treatment with serial imaging, biomarkers, toxicity assessment and quality of life assessment. DISCUSSION: Using advanced techniques such as VMAT functionally adapted radiation therapy may enable safe moderate dose escalation with an aim of improving local control and concurrently decreasing treatment related toxicity. If this technique is proven feasible, it will inform the design of a prospective randomised trial to assess the clinical benefits of functional lung avoidance radiation therapy. ETHICS AND DISSEMINATION: This study was approved by the Peter MacCallum Human Research Ethics Committee. All participants will provide written informed consent. Results will be disseminated via publications. TRIALS REGISTRATION NUMBER: NCT03569072; Pre-results.
  • Item
    No Preview Available
    Safety, Efficacy, and Patterns of Failure After Single-Fraction Stereotactic Body Radiation Therapy (SBRT) for Oligometastases
    Sogono, P ; Bressel, M ; David, S ; Shaw, M ; Chander, S ; Chu, J ; Plumridge, N ; Byrne, K ; Hardcastle, N ; Kron, T ; Wheeler, G ; Hanna, GG ; MacManus, M ; Ball, D ; Siva, S (ELSEVIER SCIENCE INC, 2021-03-01)
    PURPOSE: Fewer attendances for radiation therapy results in increased efficiency and less foot traffic within a radiation therapy department. We investigated outcomes after single-fraction (SF) stereotactic body radiation therapy (SBRT) in patients with oligometastatic disease. METHODS AND MATERIALS: Between February 2010 and June 2019, patients who received SF SBRT to 1 to 5 sites of oligometastatic disease were included in this retrospective study. The primary objective was to describe patterns of first failure after SBRT. Secondary objectives included overall survival (OS), progression-free survival (PFS), high-grade treatment-related toxicity (Common Terminology Criteria for Adverse Events grade ≥3), and freedom from systemic therapy (FFST). RESULTS: In total, 371 patients with 494 extracranial oligometastases received SF SBRT ranging from 16 Gy to 28 Gy. The most common primary malignancies were prostate (n = 107), lung (n = 63), kidney (n = 52), gastrointestinal (n = 51), and breast cancers (n = 42). The median follow-up was 3.1 years. The 1-, 3-, and 5-year OS was 93%, 69%, and 55%, respectively; PFS was 48%, 19%, and 14%, respectively; and FFST was 70%, 43%, and 35%, respectively. Twelve patients (3%) developed grade 3 to 4 treatment-related toxicity, with no grade 5 toxicity. As the first site of failure, the cumulative incidence of local failure (irrespective of other failures) at 1, 3 and 5 years was 4%, 8%, and 8%, respectively; locoregional relapse at the primary was 10%, 18%, and 18%, respectively; and distant failure was 45%, 66%, and 70%, respectively. CONCLUSIONS: SF SBRT is safe and effective, and a significant proportion of patients remain FFST for several years after therapy. This approach could be considered in resource-constrained or bundled-payment environments. Locoregional failure of the primary site is the second most common pattern of failure, suggesting a role for optimization of primary control during metastasis-directed therapy.