Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 27
  • Item
    No Preview Available
    Health economic evidence for the use of molecular biomarker tests in hematological malignancies: A systematic review
    Vu, M ; Degeling, K ; Thompson, ER ; Blombery, P ; Westerman, D ; IJzerman, MJ (WILEY, 2022-03-02)
    OBJECTIVES: Molecular biomarker tests can inform the clinical management of genomic heterogeneous hematological malignancies, yet their availability in routine care largely depends on the supporting health economic evidence. This study aims to systematically review the economic evidence for recent molecular biomarker tests in hematological malignancies. METHODS: We conducted a systematic search in five electronic databases for studies published between January 2010 and October 2020. Publications were independently screened by two reviewers. Clinical study characteristics, economic methodology, and results were extracted, and reporting quality was assessed. RESULTS: Fourteen studies were identified, of which half (n = 7; 50%) were full economic evaluations examining both health and economic outcomes. Studies were predominantly conducted in a first-line treatment setting (n = 7; 50%) and adopted a non-lifetime time horizon to measure health outcomes and costs (n = 7; 50%). Five studies reported that companion diagnostics for associated therapies were likely cost-effective for acute myeloid leukemia, chronic myeloid leukemia, diffuse large B-cell lymphoma, and multiple myeloma. Four studies suggested molecular biomarker tests for treatment monitoring in chronic myeloid leukemia were likely cost-saving. CONCLUSIONS: Although there is initial confirmation of the promising health economic results, the present research for molecular biomarker tests in hematological malignancies is sparse with many applications of technological advances yet to be evaluated.
  • Item
    Thumbnail Image
    Single-cell sequencing demonstrates complex resistance landscape in CLL and MCL treated with BTK and BCL2 inhibitors
    Thompson, ER ; Nguyen, T ; Kankanige, Y ; Markham, JF ; Anderson, MA ; Handunnetti, SM ; Thijssen, R ; Yeh, PS-H ; Tam, CS ; Seymour, JF ; Roberts, AW ; Westerman, DA ; Blombery, P (ELSEVIER, 2022-01-25)
    The genomic landscape of resistance to targeted agents (TAs) used as monotherapy in chronic lymphocytic leukemia (CLL) is complex and often heterogeneous at the patient level. To gain insight into the clonal architecture of acquired genomic resistance to Bruton tyrosine kinase (BTK) inhibitors and B-cell lymphoma 2 (BCL2) inhibitors in CLL, particularly in patients carrying multiple resistance mutations, we performed targeted single-cell DNA sequencing of 8 patients who developed progressive disease (PD) on TAs (either class). In all cases, analysis of single-cell architecture revealed mutual exclusivity between multiple resistance mutations to the same TA class, variable clonal co-occurrence of multiple mutations affecting different TAs in patients exposed to both classes, and a phenomenon of multiple independent emergences of identical nucleotide changes leading to canonical resistance mutations. We also report the first observation of established BCL2 resistance mutations in a patient with mantle cell lymphoma (MCL) following PD on sequential monotherapy, implicating BCL2 as a venetoclax resistance mechanism in MCL. Taken together, these data reveal the significant clonal complexity of CLL and MCL progression on TAs at the nucleotide level and confirm the presence of multiple, clonally independent, mechanisms of TA resistance within each individual disease context.
  • Item
    Thumbnail Image
    Detection of clinically relevant early genomic lesions in B-cell malignancies from circulating tumour DNA using a single hybridisation-based next generation sequencing assay
    Blombery, PA ; Ryland, GL ; Markham, J ; Guinto, J ; Wall, M ; McBean, M ; Jones, K ; Thompson, ER ; Cameron, DL ; Papenfuss, AT ; Prince, MH ; Dickinson, M ; Westerman, DA (WILEY, 2018-10-01)
  • Item
    No Preview Available
    Clonal hematopoiesis, myeloid disorders and BAX-mutated myelopoiesis in patients receiving venetoclax for CLL
    Blombery, P ; Lew, TE ; Dengler, MA ; Thompson, ER ; Lin, VS ; Chen, X ; Nguyen, T ; Panigrahi, A ; Handunnetti, SM ; Carney, DA ; Westerman, DA ; Tam, CS ; Adams, JM ; Wei, AH ; Huang, DCS ; Seymour, JF ; Roberts, AW ; Anderson, MA (AMER SOC HEMATOLOGY, 2022-02-24)
    The BCL2 inhibitor venetoclax has established therapeutic roles in chronic lymphocytic leukemia (CLL) and acute myeloid leukemia (AML). As BCL2 is an important determinant of survival of both myeloid progenitor and B cells, we investigated whether clinical and molecular abnormalities arise in the myeloid compartment during long-term continuous venetoclax treatment of CLL in 89 patients (87 with relapsed/refractory CLL). Over a median follow-up of 75 (range 21-98) months, persistent cytopenias (≥1 of neutropenia, thrombocytopenia, anemia) lasting ≥4 months and unrelated to CLL occurred in 25 patients (28%). Of these patients, 20 (80%) displayed clonal hematopoiesis, including 10 with therapy-related myeloid neoplasms (t-MNs). t-MNs occurred exclusively in patients previously exposed to fludarabine-alkylator combination therapy with a cumulative 5-year incidence of 10.4% after venetoclax initiation, consistent with rates reported for patients exposed to fludarabine-alkylator combination therapy without venetoclax. To determine whether the altered myelopoiesis reflected the acquisition of mutations, we analyzed samples from patients with no or minimal bone marrow CLL burden (n = 41). Mutations in the apoptosis effector BAX were identified in 32% (13/41). In cellular assays, C-terminal BAX mutants abrogated outer mitochondrial membrane localization of BAX and engendered resistance to venetoclax killing. BAX-mutated clonal hematopoiesis occurred independently of prior fludarabine-alkylator combination therapy exposure and was not associated with t-MNs. Single-cell sequencing revealed clonal co-occurrence of mutations in BAX with DNMT3A or ASXL1. We also observed simultaneous BCL2 mutations within CLL cells and BAX mutations in the myeloid compartment of the same patients, indicating lineage-specific adaptation to venetoclax therapy.
  • Item
    No Preview Available
    Outcomes of patients with CLL sequentially resistant to both BCL2 and BTK inhibition
    Lew, TE ; Lin, VS ; Cliff, ER ; Blombery, P ; Thompson, ER ; Handunnetti, SM ; Westerman, DA ; Kuss, BJ ; Tam, CS ; Huang, DCS ; Seymour, JF ; Roberts, AW ; Anderson, MA (ELSEVIER, 2021-10-21)
    Covalent Bruton tyrosine kinase inhibitors (BTKi's) and the B-cell lymphoma 2 (BCL2) inhibitor venetoclax have significantly improved outcomes for patients with chronic lymphocytic leukemia (CLL), especially those with biologically adverse disease. Patients with CLL resistant to their first targeted agent (TA) can be effectively treated with the alternative class. However, relapses are expected with second-line TA therapy, and the clinical challenge of double class-resistant disease is now emerging with increasing frequency. To define the characteristics and outcomes of patients with double class-resistant disease, we retrospectively analyzed 17 patients who developed progressive disease (PD) on both TA classes for CLL (venetoclax, then BTKi, n=12; BTKi, then venetoclax, n = 5). The cohort was heavily pretreated (median lines of prior therapy, 4) and enriched for adverse disease genetics (complex karyotype, 12 of 12 tested [100%]; del(17p)/TP53 mutations, 15 of 17 [88%]). The median time to progression on prior venetoclax was 24 months (range, 6-94 months) and was 25 months (range, 1-55 months) on prior BTKi. Progression on second-line TA was manifest as progressive CLL in 11 patients and as Richter transformation in 6. The median overall survival after progression on second-line TA was 3.6 months (95% confidence interval, 2-11 months). Patients with double class-resistant CLL have a dismal prognosis, representing a group of high unmet need.
  • Item
    Thumbnail Image
    Characterization of a novel venetoclax resistance mutation (BCL2 Phe104Ile) observed in follicular lymphoma
    Blombery, P ; Birkinshaw, RW ; Nguyen, T ; Gong, J-N ; Thompson, ER ; Xu, Z ; Westerman, DA ; Czabotar, PE ; Dickinson, M ; Huang, DCS ; Seymour, JF ; Roberts, AW (WILEY, 2019-09-01)
  • Item
    No Preview Available
    Quantitation of CMV Specific T-Cell Expansion Using T Cell Receptor Beta Locus Deep Sequencing to Identify Patients at Risk of Viral Complications
    Kuzich, JA ; Kankanige, Y ; Guinto, J ; Ryland, G ; McBean, M ; Thompson, E ; Wong, E ; Koldej, R ; Collins, J ; Westerman, D ; Ritchie, DS ; Blombery, P (ELSEVIER SCIENCE INC, 2020-03-01)
  • Item
    Thumbnail Image
    Inotuzumab ozogamicin resistance associated with a novel CD22 truncating mutation in a case of B-acute lymphoblastic leukaemia
    Ryland, GL ; Barraclough, A ; Fong, CY ; Fleming, S ; Bajel, A ; Hofmann, O ; Westerman, D ; Grimmond, S ; Blombery, P (WILEY, 2020-07-09)
  • Item
    Thumbnail Image
    Validation of a modified pre-lysis sample preparation technique for flow cytometric minimal residual disease assessment in multiple myeloma, chronic lymphocytic leukemia, and B-non Hodgkin lymphoma
    Bayly, E ; Nguyen, V ; Binek, A ; Piggin, A ; Baldwin, K ; Westerman, D ; Came, N (WILEY, 2020-06-12)
    BACKGROUND: Minimal residual disease (MRD) assessment of hematopoietic neoplasia below 10-4 requires more leukocytes than is usually attainable by post-lysis preparation. However, not all laboratories are resourced for consensus Euroflow pre-lysis methodology. Our study aim was to validate a modified pre-lysis protocol against our standard post-lysis method for MRD detection of multiple myeloma (MM), chronic lymphocytic leukemia (CLL), and B-non Hodgkin lymphoma (B-NHL), to meet demand for deeper MRD assessment by flow cytometry. METHOD: Clinical samples for MRD assessment of MM, CLL, and B-NHL (50, 30, and 30 cases, respectively) were prepared in parallel by pre and post-lysis methods for the initial validation. Total leukocytes, MRD, and median fluorescence intensity of antigen expression were compared as measures of sensitivity and antigen stability. Lymphocyte and granulocyte composition were compared, assessing relative sample processing stability. Sensitivity of the pre-lysis assay was monitored post validation for a further 18 months. RESULTS: Pre-lysis achieved at least 10-4 sensitivity in 85% MM, 81% CLL, and 90% B-NHL samples versus 24%, 48%, and 26% by post-lysis, respectively, with stable antigen expression and leukocyte composition. Post validation over 18 months with technical expertise improving, pre-lysis permitted 10-5 MRD assessment in 69%, 86%, and 82% of the respective patient groups. CONCLUSION: This modified pre-lysis procedure provides a sensitive, robust, time efficient, and relatively cost-effective alternative for MRD testing by MFC at 10-5 , facilitating clinically meaningful deeper response assessment for MM, CLL, and B-NHL. This method adaptation may facilitate more widespread adoption of highly sensitive flow cytometry-based MRD assessment.
  • Item
    Thumbnail Image
    ASXL1 c.1934dup;p.Gly646Trpfs*12-a true somatic alteration requiring a new approach
    Yannakou, CK ; Jones, K ; McBean, M ; Thompson, ER ; Ryland, GL ; Doig, K ; Markham, J ; Westerman, D ; Blombery, P (NATURE PUBLISHING GROUP, 2017-12-20)