Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 10
  • Item
    Thumbnail Image
    Enhancing immunotherapy using chemotherapy and radiation to modify the tumor microenvironment
    Kershaw, MH ; Devaud, C ; John, LB ; Westwood, JA ; Darcy, PK (TAYLOR & FRANCIS INC, 2013-09)
    The tumor microenvironment is a complex assortment of cells that includes a variety of leukocytes. The overall effect of the microenvironment is to support the growth of tumors and suppress immune responses. Immunotherapy is a highly promising form of cancer treatment, but its efficacy can be severely compromised by an immunosuppressive tumor microenvironment. Chemotherapy and radiation treatment can mediate tumor reduction through cytotoxic effects, but it is becoming increasingly clear that these forms of treatment can be used to modify the tumor microenvironment to liberate tumor antigens and decrease immunosuppression. Chemotherapy and radiotherapy can be used to modulate the tumor microenvironment to enhance immunotherapy.
  • Item
    Thumbnail Image
    Blockade of PD-1 immunosuppression boosts CAR T-cell therapy
    John, LB ; Kershaw, MH ; Darcy, PK (LANDES BIOSCIENCE, 2013-10-01)
    The presence of an immunosuppressive microenvironment can limit the full potential of adoptive T cell immunotherapy. However, specific blockade of the PD-1 immunosuppressive pathway can significantly enhance the function of gene-modified T cells expressing a chimeric antigen receptor (CAR) leading to enhanced tumor eradication.
  • Item
    Thumbnail Image
    Immune modulation of the tumor microenvironment for enhancing cancer immunotherapy
    Devaud, C ; John, LB ; Westwood, JA ; Darcy, PK ; Kershaw, MH (TAYLOR & FRANCIS INC, 2013-08)
    There is much promise in the use of immunotherapy for the treatment of cancer. Approaches such as those using antibodies or adoptive cell transfer can mediate complete tumor regression in a proportion of patients. However, the tumor microenvironment can inhibit immune responses leading to ineffective or suboptimal responses of tumors to immunotherapy in the majority of cases. As our knowledge of the tumor microenvironment increases, many strategies are emerging for changing the immunosuppressive nature of the tumor toward a microenvironment able to support immunity. These strategies aim to enhance the ability of immunotherapies to initiate effective immune responses able to destroy tumors. In this article, we review approaches that use immunomodulators specifically to modify the tumor microenvironment, and their use in combination with other immune-based strategies for cancer therapy.
  • Item
    Thumbnail Image
    Three agonist antibodies in combination with high-dose IL-2 eradicate orthotopic kidney cancer in mice
    Westwood, JA ; Darcy, PK ; Guru, PM ; Sharkey, J ; Pegram, HJ ; Amos, SM ; Smyth, MJ ; Kershaw, MH (BMC, 2010-04-28)
    BACKGROUND: Combination immunotherapies can be effective against subcutaneous tumors in mice but the effect against orthotopic malignant disease is less well characterized. In particular, a combination of three agonist antibodies, termed Tri-mAb, consisting of anti-DR5, anti-CD40 and anti-CD137 has previously been demonstrated to eradicate a large proportion of subcutaneous renal cell carcinoma (Renca) tumors (75% long-term survival), but the effect against orthotopic disease is not known. PURPOSE: To determine the relative response of orthotopic tumors, we inoculated Renca into the kidney followed by treatment with Tri-mAb. RESULTS: We found that orthotopic tumors responded much less to treatment (approximately 13% survival), but a significant improvement in survival was achieved through the addition of IL-2 to the treatment regimen (55% survival). All three agonist antibodies and high dose IL-2, 100,000 IU for up to six doses, were required. CD8+ T cells were also required for optimal anti-tumor responses. Coadministration of IL-2 led to enhanced T cell activity as demonstrated by an increased frequency of IFN-gamma-producing T cells in tumor-draining lymph nodes, which may have contributed to the observed improvement of therapy against kidney tumors. IMPLICATIONS: Responses of subcutaneous tumors to immunotherapy do not necessarily reflect how orthotopic tumors respond. The use of combination immunotherapy stimulating multiple facets of immunity and including cytokine support for T cells can induce effective anti-tumor responses against orthotopic and metastatic tumors.
  • Item
    Thumbnail Image
    Environmental enrichment does not impact on tumor growth in mice.
    Westwood, JA ; Darcy, PK ; Kershaw, MH (F1000 Research Ltd, 2013)
    The effect of environmental enrichment (EE) on a variety of physiologic and disease processes has been studied in laboratory mice. During EE, a large group of mice are housed in larger cages than the standard cage and are given toys and equipment, enabling more social contact, and providing a greater surface area per mouse, and a more stimulating environment. Studies have been performed into the effect of EE on neurogenesis, brain injury, cognitive capacity, memory, learning, neuronal pathways, diseases such as Alzheimer's, anxiety, social defeat, emotionality, depression, drug addiction, alopecia, and stereotypies. In the cancer field, three papers have reported effects on mice injected with tumors and housed in enriched environments compared with those housed in standard conditions. One paper reported a significant decrease in tumor growth in mice in EE housing. We attempted to replicate this finding in our animal facility, because the implications of repeating this finding would have profound implications for how we house all our mice in our studies on cancer. We were unable to reproduce the results in the paper in which B16F10 subcutaneous tumors of mice housed in EE conditions were smaller than those of mice housed in standard conditions. The differences in results could have been due to the different growth rate of the B16F10 cultures from the different laboratories, the microbiota of the mice housed in the two animal facilities, variations in noise and handling between the two facilities, food composition, the chemical composition of the cages or the detergents used for cleaning, or a variety of other reasons. EE alone does not appear to consistently result in decreased tumor growth, but other factors would appear to be able to counteract or inhibit the effects of EE on cancer progression.
  • Item
    Thumbnail Image
    A2A blockade enhances anti-metastatic immune responses
    Beavis, PA ; Milenkovski, N ; Stagg, J ; Smyth, MJ ; Darcy, PK (TAYLOR & FRANCIS INC, 2013-12)
    The specific targeting of tumor-elicited immunosuppression is a promising strategy for the treatment of cancer. We have recently demonstrated that targeting the immunosuppressive pathway mediated by CD73-derived adenosine through the blockade of A2A/A2B adenosine receptors significantly reduced the metastatic potential of CD73+ breast carcinomas and melanomas via both immunological and non-immunological mechanisms.
  • Item
    Thumbnail Image
    The functional basis for hemophagocytic lymphohistiocytosis in a patient with co-inherited missense mutations in the perforin (PFN1) gene
    Voskoboinik, I ; Thia, MC ; De Bono, A ; Browne, K ; Cretney, E ; Jackson, JT ; Darcy, PK ; Jane, SM ; Smyth, MJ ; Trapani, JA (ROCKEFELLER UNIV PRESS, 2004-09-20)
    About 30% of cases of the autosomal recessive immunodeficiency disorder hemophagocytic lymphohistiocytosis are believed to be caused by inactivating mutations of the perforin gene. We expressed perforin in rat basophil leukemia cells to define the basis of perforin dysfunction associated with two mutations, R225W and G429E, inherited by a compound heterozygote patient. Whereas RBL cells expressing wild-type perforin (67 kD) efficiently killed Jurkat target cells to which they were conjugated, the substitution to tryptophan at position 225 resulted in expression of a truncated ( approximately 45 kD) form of the protein, complete loss of cytotoxicity, and failure to traffic to rat basophil leukemia secretory granules. By contrast, G429E perforin was correctly processed, stored, and released, but the rat basophil leukemia cells possessed reduced cytotoxicity. The defective function of G429E perforin mapped downstream of exocytosis and was due to its reduced ability to bind lipid membranes in a calcium-dependent manner. This study elucidates the cellular basis for perforin dysfunctions in hemophagocytic lymphohistiocytosis and provides the means for studying structure-function relationships for lymphocyte perforin.
  • Item
    Thumbnail Image
    Engineering T Cell Function Using Chimeric Antigen Receptors Identified Using a DNA Library Approach
    Duong, CPM ; Westwood, JA ; Yong, CSM ; Murphy, A ; Devaud, C ; John, LB ; Darcy, PK ; Kershaw, MH ; Bachmann, MP (PUBLIC LIBRARY SCIENCE, 2013-05-07)
    Genetic engineering of cellular function holds much promise for the treatment of a variety of diseases including gene deficiencies and cancer. However, engineering the full complement of cellular functions can be a daunting genetic exercise since many molecular triggers need to be activated to achieve complete function. In the case of T cells, genes encoding chimeric antigen receptors (CARs) covalently linking antibodies to cytoplasmic signaling domains can trigger some, but not all, cellular functions against cancer cells. To date, relatively few CAR formats have been investigated using a candidate molecule approach, in which rationally chosen molecules were trialed one by one. Therefore, to expedite this arduous process we developed an innovative screening method to screen many thousands of CAR formats to identify genes able to enhance the anticancer ability of T cells. We used a directional in-frame library of randomly assembled signaling domains in a CAR specific for the tumor associated antigen erbB2. Several new and original CARs were identified, one of which had an enhanced ability to lyse cancer cells and inhibit tumor growth in mice. This study highlights novel technology that could be used to screen a variety of molecules for their capacity to induce diverse functions in cells.
  • Item
    No Preview Available
    CD73 promotes anthracycline resistance and poor prognosis in triple negative breast cancer
    Loi, S ; Pommey, S ; Haibe-Kains, B ; Beavis, PA ; Darcy, PK ; Smyth, MJ ; Stagg, J (NATL ACAD SCIENCES, 2013-07-02)
    Using gene-expression data from over 6,000 breast cancer patients, we report herein that high CD73 expression is associated with a poor prognosis in triple-negative breast cancers (TNBC). Because anthracycline-based chemotherapy regimens are standard treatment for TNBC, we investigated the relationship between CD73 and anthracycline efficacy. In TNBC patients treated with anthracycline-only preoperative chemotherapy, high CD73 gene expression was significantly associated with a lower rate of pathological complete response or the disappearance of invasive tumor at surgery. Using mouse models of breast cancer, we demonstrated that CD73 overexpression in tumor cells conferred chemoresistance to doxorubicin, a commonly used anthracycline, by suppressing adaptive antitumor immune responses via activation of A2A adenosine receptors. Targeted blockade of CD73 enhanced doxorubicin-mediated antitumor immune responses and significantly prolonged the survival of mice with established metastatic breast cancer. Taken together, our data suggest that CD73 constitutes a therapeutic target in TNBC.
  • Item
    Thumbnail Image
    Virotherapy, gene transfer and immunostimulatory monoclonal antibodies
    Quetglas, JI ; John, LB ; Kershaw, MH ; Alvarez-Vallina, L ; Melero, I ; Darcy, PK ; Smerdou, C (TAYLOR & FRANCIS INC, 2012-11)
    Malignant cells are susceptible to viral infection and consequent cell death. Virus-induced cell death is endowed with features that are known to stimulate innate and adaptive immune responses. Thus danger signals emitted by cells succumbing to viral infection as well as viral nucleic acids are detected by specific receptors, and tumor cell antigens can be routed to professional antigen-presenting cells. The anticancer immune response triggered by viral infection is frequently insufficient to eradicate malignancy but may be further amplified. For this purpose, transgenes encoding cytokines as co-stimulatory molecules can be genetically engineered into viral vectors. Alternatively, or in addition, it is possible to use monoclonal antibodies that either block inhibitory receptors of immune effector cells, or act as agonists for co-stimulatory receptors. Combined strategies are based on the ignition of a local immune response at the malignant site plus systemic immune boosting. We have recently reported examples of this approach involving the Vaccinia virus or Semliki Forest virus, interleukin-12 and anti-CD137 monoclonal antibodies.