Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 7 of 7
  • Item
    No Preview Available
    Cathepsin C limits acute viral infection independently of NK cell and CD8+ T-cell cytolytic function
    Andoniou, CE ; Fleming, P ; Sutton, VR ; Trapani, JA ; Degli-Esposti, MA (WILEY, 2011-05)
    Destruction of target cells by cytotoxic T lymphocytes (CTLs) or natural killer (NK) cells requires the coordinated action of the pore forming protein perforin (Pfp) and the granzyme (Gzm) family of serine proteases. The activation of a number of serine proteases, including GzmA and B, is predominately mediated by cathepsin C (CatC). Deficiencies in CatC-null mice were therefore expected to replicate the defects observed in GzmAB-deficient mice. We have previously determined that GzmAB-deficient mice exhibit increased susceptibility to murine cytomegalovirus (MCMV) infection. Here, we have compared the ability of CatC(-/-) mice to control MCMV infection with that of GzmAB-deficient animals. We found that CatC(-/-) mice have organ-specific defects in the ability to control MCMV replication, a phenotype that is distinct to that observed in GzmAB(-/-) mice. Significantly, the cytolytic function of CatC-deficient NK cells and CTLs elicited during infection was indistinguishable from that of wild-type cells. Hence, CatC is involved in limiting MCMV replication; however, this effect is independent of its role in promoting effector cytolytic activity. These data provide evidence for a novel and unexpected role of CatC during viral infection.
  • Item
    Thumbnail Image
    Residual active granzyme B in cathepsin C-null lymphocytes is sufficient for perforin-dependent target cell apoptosis
    Sutton, VR ; Waterhouse, NJ ; Browne, KA ; Sedelies, K ; Ciccone, A ; Anthony, D ; Koskinen, A ; Mullbacher, A ; Trapani, JA (ROCKEFELLER UNIV PRESS, 2007-02-12)
    Cathepsin C activates serine proteases expressed in hematopoietic cells by cleaving an N-terminal dipeptide from the proenzyme upon granule packaging. The lymphocytes of cathepsin C-null mice are therefore proposed to totally lack granzyme B activity and perforin-dependent cytotoxicity. Surprisingly, we show, using live cell microscopy and other methodologies, that cells targeted by allogenic CD8(+) cytotoxic T lymphocyte (CTL) raised in cathepsin C-null mice die through perforin-dependent apoptosis indistinguishable from that induced by wild-type CTL. The cathepsin C-null CTL expressed reduced but still appreciable granzyme B activity, but minimal granzyme A activity. Also, in contrast to mice with inactivation of both their granzyme A/B genes, cathepsin C deficiency did not confer susceptibility to ectromelia virus infection in vivo. Overall, our results indicate that although cathepsin C clearly generates the majority of granzyme B activity, some is still generated in its absence, pointing to alternative mechanisms for granzyme B processing and activation. Cathepsin C deficiency also results in considerably milder immune deficiency than perforin or granzyme A/B deficiency.
  • Item
    Thumbnail Image
    A novel role for granzymes in anti-tumor immunity
    Hoves, S ; Sutton, VR ; Trapani, JA (LANDES BIOSCIENCE, 2012-03-01)
    The cytotoxic properties of granzymes are well established, though recent publications suggest additional roles for granzymes in immunity. We demonstrated that granzymes can act as regulators of cross-presentation by dendritic cells by inducing critical "eat-me" signals on the dying tumor cell, resulting in efficient phagocytosis of cell-associated tumor antigen.
  • Item
    Thumbnail Image
    Granzyme B triggers a prolonged pressure to die in Bcl-2 overexpressing cells, defining a window of opportunity for effective treatment with ABT-737
    Sutton, VR ; Sedelies, K ; Dewson, G ; Christensen, ME ; Bird, PI ; Johnstone, RW ; Kluck, RM ; Trapani, JA ; Waterhouse, NJ (NATURE PUBLISHING GROUP, 2012-07)
    Overexpression of Bcl-2 contributes to resistance of cancer cells to human cytotoxic lymphocytes (CL) by blocking granzyme B (GraB)-induced mitochondrial outer membrane permeabilization (MOMP). Drugs that neutralise Bcl-2 (e.g., ABT-737) may therefore be effective adjuvants for immunotherapeutic strategies that use CL to kill cancer cells. Consistent with this we found that ABT-737 effectively restored MOMP in Bcl-2 overexpressing cells treated with GraB or natural killer cells. This effect was observed even if ABT-737 was added up to 16 h after GraB, after which the cells reset their resistant phenotype. Sensitivity to ABT-737 required initial cleavage of Bid by GraB (gctBid) but did not require ongoing GraB activity once Bid had been cleaved. This gctBid remained detectable in cells that were sensitive to ABT-737, but Bax and Bak were only activated if ABT-737 was added to the cells. These studies demonstrate that GraB generates a prolonged pro-apoptotic signal that must remain active for ABT-737 to be effective. The duration of this signal is determined by the longevity of gctBid but not activation of Bax or Bak. This defines a therapeutic window in which ABT-737 and CL synergise to cause maximum death of cancer cells that are resistant to either treatment alone, which will be essential in defining optimum treatment regimens.
  • Item
    Thumbnail Image
    Initiation of apoptosis by granzyme B requires direct cleavage of Bid, but not direct granzyme B-mediated caspase activation
    Sutton, VR ; Davis, JE ; Cancilla, M ; Johnstone, RW ; Ruefli, AA ; Sedelies, K ; Browne, KA ; Trapani, JA (ROCKEFELLER UNIV PRESS, 2000-11-20)
    The essential upstream steps in granzyme B-mediated apoptosis remain undefined. Herein, we show that granzyme B triggers the mitochondrial apoptotic pathway through direct cleavage of Bid; however, cleavage of procaspases was stalled when mitochondrial disruption was blocked by Bcl-2. The sensitivity of granzyme B-resistant Bcl-2-overexpressing FDC-P1 cells was restored by coexpression of wild-type Bid, or Bid with a mutation of its caspase-8 cleavage site, and both types of Bid were cleaved. However, Bid with a mutated granzyme B cleavage site remained intact and did not restore apoptosis. Bid with a mutation preventing its interaction with Bcl-2 was cleaved but also failed to restore apoptosis. Rapid Bid cleavage by granzyme B (<2 min) was not delayed by Bcl-2 overexpression. These results clearly placed Bid cleavage upstream of mitochondrial Bcl-2. In granzyme B-treated Jurkat cells, endogenous Bid cleavage and loss of mitochondrial membrane depolarization occurred despite caspase inactivation with z-Val-Ala-Asp-fluoromethylketone or Asp-Glu-Val-Asp-fluoromethylketone. Initial partial processing of procaspase-3 and -8 was observed irrespective of Bcl-2 overexpression; however, later processing was completely abolished by Bcl-2. Overall, our results indicate that mitochondrial perturbation by Bid is necessary to achieve a lethal threshold of caspase activity and cell death due to granzyme B.
  • Item
    Thumbnail Image
    Cytotoxic T lymphocyte-induced killing in the absence of granzymes A and B is unique and distinct from both apoptosis and perforin-dependent lysis
    Waterhouse, NJ ; Sutton, VR ; Sedelies, KA ; Ciccone, A ; Jenkins, M ; Turner, SJ ; Bird, PI ; Trapani, JA (ROCKEFELLER UNIV PRESS, 2006-04-10)
    Cytotoxic T lymphocyte (CTL)-induced death triggered by the granule exocytosis pathway involves the perforin-dependent delivery of granzymes to the target cell. Gene targeting has shown that perforin is essential for this process; however, CTL deficient in the key granzymes A and B maintain the ability to kill their targets by granule exocytosis. It is not clear how granzyme AB(-/-) CTLs kill their targets, although it has been proposed that this occurs through perforin-induced lysis. We found that purified granzyme B or CTLs from wild-type mice induced classic apoptotic cell death. Perforin-induced lysis was far more rapid and involved the formation of large plasma membrane protrusions. Cell death induced by granzyme AB(-/-) CTLs shared similar kinetics and morphological characteristics to apoptosis but followed a distinct series of molecular events. Therefore, CTLs from granzyme AB(-/-) mice induce target cell death by a unique mechanism that is distinct from both perforin lysis and apoptosis.
  • Item
    No Preview Available
    Perforin forms transient pores on the target cell plasma membrane to facilitate rapid access of granzymes during killer cell attack
    Lopez, JA ; Susanto, O ; Jenkins, MR ; Lukoyanova, N ; Sutton, VR ; Law, RHP ; Johnston, A ; Bird, CH ; Bird, PI ; Whisstock, JC ; Trapani, JA ; Saibil, HR ; Voskoboinik, I (AMER SOC HEMATOLOGY, 2013-04-04)
    Cytotoxic lymphocytes serve a key role in immune homeostasis by eliminating virus-infected and transformed target cells through the perforin-dependent delivery of proapoptotic granzymes. However, the mechanism of granzyme entry into cells remains unresolved. Using biochemical approaches combined with time-lapse microscopy of human primary cytotoxic lymphocytes engaging their respective targets, we defined the time course of perforin pore formation in the context of the physiological immune synapse. We show that, on recognition of targets, calcium influx into the lymphocyte led to perforin exocytosis and target cell permeabilization in as little as 30 seconds. Within the synaptic cleft, target cell permeabilization by perforin resulted in the rapid diffusion of extracellular milieu-derived granzymes. Repair of these pores was initiated within 20 seconds and was completed within 80 seconds, thus limiting granzyme diffusion. Remarkably, even such a short time frame was sufficient for the delivery of lethal amounts of granzymes into the target cell. Rapid initiation of apoptosis was evident from caspase-dependent target cell rounding within 2 minutes of perforin permeabilization. This study defines the final sequence of events controlling cytotoxic lymphocyte immune defense, in which perforin pores assemble on the target cell plasma membrane, ensuring efficient delivery of lethal granzymes.