Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 19
  • Item
    No Preview Available
    Membrane-bound Fas ligand only is essential for Fas-induced apoptosis
    Reilly, LAO ; Tai, L ; Lee, L ; Kruse, EA ; Grabow, S ; Fairlie, WD ; Haynes, NM ; Tarlinton, DM ; Zhang, J-G ; Belz, GT ; Smyth, MJ ; Bouillet, P ; Robb, L ; Strasser, A (NATURE PUBLISHING GROUP, 2009-10-01)
    Fas ligand (FasL), an apoptosis-inducing member of the TNF cytokine family, and its receptor Fas are critical for the shutdown of chronic immune responses and prevention of autoimmunity. Accordingly, mutations in their genes cause severe lymphadenopathy and autoimmune disease in mice and humans. FasL function is regulated by deposition in the plasma membrane and metalloprotease-mediated shedding. Here we generated gene-targeted mice that selectively lack either secreted FasL (sFasL) or membrane-bound FasL (mFasL) to resolve which of these forms is required for cell killing and to explore their hypothesized non-apoptotic activities. Mice lacking sFasL (FasL(Deltas/Deltas)) appeared normal and their T cells readily killed target cells, whereas T cells lacking mFasL (FasL(Deltam/Deltam)) could not kill cells through Fas activation. FasL(Deltam/Deltam) mice developed lymphadenopathy and hyper-gammaglobulinaemia, similar to FasL(gld/gld) mice, which express a mutant form of FasL that cannot bind Fas, but surprisingly, FasL(Deltam/Deltam) mice (on a C57BL/6 background) succumbed to systemic lupus erythematosus (SLE)-like autoimmune kidney destruction and histiocytic sarcoma, diseases that occur only rarely and much later in FasL(gld/gld) mice. These results demonstrate that mFasL is essential for cytotoxic activity and constitutes the guardian against lymphadenopathy, autoimmunity and cancer, whereas excess sFasL appears to promote autoimmunity and tumorigenesis through non-apoptotic activities.
  • Item
    Thumbnail Image
    Enhancing the antitumor effects of radiotherapy with combinations of immunostimulatory antibodies
    Verbrugge, I ; Galli, M ; Smyth, MJ ; Johnstone, RW ; Haynes, NM (LANDES BIOSCIENCE, 2012-12)
    The development and use of combination immunotherapy-based anticancer regimens is at an early but clearly exciting stage. We now demonstrate that the antibody-based co-targeting of multiple immunostimulatory and/or inhibitory pathways can be used safely and effectively in combination with single dose or fractionated radiotherapy to cure mice bearing established mammary tumors.
  • Item
    Thumbnail Image
    Hypoxia-driven immunosuppression contributes to the pre-metastatic niche
    Sceneay, J ; Parker, BS ; Smyth, MJ ; Moeller, A (TAYLOR & FRANCIS INC, 2013-01)
    Primary tumor cells create favorable microenvironments in secondary organs, termed pre-metastatic niches, that promote the formation of metastases. Using immune competent syngenic breast cancer mouse models, we have recently demonstrated that factors secreted by hypoxic tumor cells condition pre-metastatic niches by recruiting CD11b+/Ly6Cmed/Ly6G+ myeloid cells and suppressing natural killer cell functions.
  • Item
    Thumbnail Image
    The combination of histone deacetylase inhibitors with immune-stimulating antibodies has potent anti-cancer effects
    West, AC ; Christiansen, AJ ; Smyth, MJ ; Johnstone, RW (LANDES BIOSCIENCE, 2012-05-01)
    The use of immunotherapy to treat cancer is rapidly gaining momentum. Using pre-clinical mouse models, we have recently demonstrated potent and long lasting tumor regression can be elicited by immune-stimulating monoclonal antibodies (mAbs) when combined with histone deacetylase inhibitors (HDACi) and believe this therapy will have broad application in humans.
  • Item
    Thumbnail Image
    Cancer immunoediting by the innate immune system in the absence of adaptive immunity
    O'Sullivan, T ; Saddawi-Konefka, R ; Vermi, W ; Koebel, CM ; Arthur, C ; White, JM ; Uppaluri, R ; Andrews, DM ; Ngiow, SF ; Teng, MWL ; Smyth, MJ ; Schreiber, RD ; Bui, JD (ROCKEFELLER UNIV PRESS, 2012-09-24)
    Cancer immunoediting is the process whereby immune cells protect against cancer formation by sculpting the immunogenicity of developing tumors. Although the full process depends on innate and adaptive immunity, it remains unclear whether innate immunity alone is capable of immunoediting. To determine whether the innate immune system can edit tumor cells in the absence of adaptive immunity, we compared the incidence and immunogenicity of 3'methylcholanthrene-induced sarcomas in syngeneic wild-type, RAG2(-/-), and RAG2(-/-)x γc(-/-) mice. We found that innate immune cells could manifest cancer immunoediting activity in the absence of adaptive immunity. This activity required natural killer (NK) cells and interferon γ (IFN-γ), which mediated the induction of M1 macrophages. M1 macrophages could be elicited by administration of CD40 agonists, thereby restoring editing activity in RAG2(-/-)x γc(-/-) mice. Our results suggest that in the absence of adaptive immunity, NK cell production of IFN-γ induces M1 macrophages, which act as important effectors during cancer immunoediting.
  • Item
    Thumbnail Image
    Studying the role of the immune system on the antitumor activity of a Hedgehog inhibitor against murine osteosarcoma
    Paget, C ; Duret, H ; Ngiow, SF ; Kansara, M ; Thomas, DM ; Smyth, MJ (TAYLOR & FRANCIS INC, 2012-11)
    Recent evidence demonstrates that the efficacy of conventional anticancer therapies including chemotherapy requires a functional immune system. Here, we addressed the possibility that the antitumor effect of a selective Smoothened antagonist and Hedgehog (Hh) pathway inhibitor (LDE225), a promising anticancer drug, might at least partially depend on the immune system. To this aim, we used tumor cell lines derived from a murine model of radiation-induced osteosarcoma. In vitro treatment of osteosarcoma cells with LDE225 resulted in a decreased ability of tumor cells to proliferate, but had no effect on their viability. Flow cytometry analysis demonstrated that LDE225-treatment did not detectably modulate the immunogenicity of tumor cells. Moreover, LDE225 did not display any pro-apoptotic properties on osteosarcoma cells, highlighting that its antitumor profile mainly derives from a cytostatic effect. Furthermore, calreticulin exposure, a key feature of immunogenic cell death, was not provoked by LDE225, neither alone nor combined with recognized immunogenic drugs. Finally, the oral administration of LDE225 to osteosarcoma-bearing mice did significantly delay the tumor growth even in an immunocompromised setting. These data suggest that inhibiting Hh signaling can control osteosarcoma cell proliferation but does not modulate the immunogenic profile of these cells.
  • Item
    Thumbnail Image
    Three agonist antibodies in combination with high-dose IL-2 eradicate orthotopic kidney cancer in mice
    Westwood, JA ; Darcy, PK ; Guru, PM ; Sharkey, J ; Pegram, HJ ; Amos, SM ; Smyth, MJ ; Kershaw, MH (BMC, 2010-04-28)
    BACKGROUND: Combination immunotherapies can be effective against subcutaneous tumors in mice but the effect against orthotopic malignant disease is less well characterized. In particular, a combination of three agonist antibodies, termed Tri-mAb, consisting of anti-DR5, anti-CD40 and anti-CD137 has previously been demonstrated to eradicate a large proportion of subcutaneous renal cell carcinoma (Renca) tumors (75% long-term survival), but the effect against orthotopic disease is not known. PURPOSE: To determine the relative response of orthotopic tumors, we inoculated Renca into the kidney followed by treatment with Tri-mAb. RESULTS: We found that orthotopic tumors responded much less to treatment (approximately 13% survival), but a significant improvement in survival was achieved through the addition of IL-2 to the treatment regimen (55% survival). All three agonist antibodies and high dose IL-2, 100,000 IU for up to six doses, were required. CD8+ T cells were also required for optimal anti-tumor responses. Coadministration of IL-2 led to enhanced T cell activity as demonstrated by an increased frequency of IFN-gamma-producing T cells in tumor-draining lymph nodes, which may have contributed to the observed improvement of therapy against kidney tumors. IMPLICATIONS: Responses of subcutaneous tumors to immunotherapy do not necessarily reflect how orthotopic tumors respond. The use of combination immunotherapy stimulating multiple facets of immunity and including cytokine support for T cells can induce effective anti-tumor responses against orthotopic and metastatic tumors.
  • Item
    Thumbnail Image
    A role for CCL2 in both tumor progression and immunosurveillance
    Li, M ; Knight, DA ; Snyder, LA ; Smyth, MJ ; Stewart, TJ (TAYLOR & FRANCIS INC, 2013-07-01)
    The chemokine CCL2, which is best known for its chemotactic functions, is expressed not only by immune cells, but also by several types of malignant and stromal cells. CCL2 has been shown to exert both pro- and anti-tumor effects. However, recent results demonstrate a main role for CCL2 in tumor progression and metastasis, suggesting that this chemokine may constitute a therapeutic target for anticancer drugs. Mammary carcinoma models, including models of implantable, transgenic, and chemically-induced tumors, were employed in the setting of Ccl2 or Ccr2 knockout mice or CCL2 neutralization with a monoclonal antibody to further investigate the role of the CCL2/CCR2 signaling axis in tumor progression and metastatic spread. In our implantable tumor models, an anti-CCL2 monoclonal antibody inhibited the growth of primary malignant lesions in a biphasic manner and reduced the number of metastases. However, in Ccl2-/- or Ccr2-/- mice developing implanted or transgenic tumors, the number of pulmonary metastases was increased despite a reduction in the growth rate of primary neoplasms. Transgenic Mtag.Ccl2-/- or Mtag.Ccr2-/- mice also exhibited a significantly earlier of disease onset. In a chemical carcinogenesis model, anti-CCL2 monoclonal antibody inhibited the growth of established lesions but was ineffective in the tumor induction phase. In contrast to previous studies indicating a role for CCL2 in the establishment of metastases, we have demonstrated that the absence of CCL2/CCR2-signaling results in increased metastatic disease. Thus, the CCL2/CCR2 signaling axis appears to play a dual role in mediating early tumor immunosurveillance and sustaining the growth and progression of established neoplasms. Our findings support the use of anti-CCL2 therapies for the treatment of established breast carcinoma, although the complete abrogation of the CCL2 signaling cascade may also limit immunosurveillance and support metastatic spread.
  • Item
    Thumbnail Image
    Suppression of lymphoma and epithelial malignancies effected by interferon γ
    Street, SEA ; Trapani, JA ; MacGregor, D ; Smyth, MJ (ROCKEFELLER UNIV PRESS, 2002-07-01)
    The immunosurveillance of transformed cells by the immune system remains one of the most controversial and poorly understood areas of immunity. Gene-targeted mice have greatly aided our understanding of the key effector molecules in tumor immunity. Herein, we describe spontaneous tumor development in gene-targeted mice lacking interferon (IFN)-gamma and/or perforin (pfp), or the immunoregulatory cytokines, interleukin (IL)-12, IL-18, and tumor necrosis factor (TNF). Both IFN-gamma and pfp were critical for suppression of lymphomagenesis, however the level of protection afforded by IFN-gamma was strain specific. Lymphomas arising in IFN-gamma-deficient mice were very nonimmunogenic compared with those derived from pfp-deficient mice, suggesting a comparatively weaker immunoselection pressure by IFN-gamma. Single loss of IL-12, IL-18, or TNF was not sufficient for spontaneous tumor development. A significant incidence of late onset adenocarcinoma observed in both IFN-gamma- and pfp-deficient mice indicated that some epithelial tissues were also subject to immunosurveillance.
  • Item
    Thumbnail Image
    The functional basis for hemophagocytic lymphohistiocytosis in a patient with co-inherited missense mutations in the perforin (PFN1) gene
    Voskoboinik, I ; Thia, MC ; De Bono, A ; Browne, K ; Cretney, E ; Jackson, JT ; Darcy, PK ; Jane, SM ; Smyth, MJ ; Trapani, JA (ROCKEFELLER UNIV PRESS, 2004-09-20)
    About 30% of cases of the autosomal recessive immunodeficiency disorder hemophagocytic lymphohistiocytosis are believed to be caused by inactivating mutations of the perforin gene. We expressed perforin in rat basophil leukemia cells to define the basis of perforin dysfunction associated with two mutations, R225W and G429E, inherited by a compound heterozygote patient. Whereas RBL cells expressing wild-type perforin (67 kD) efficiently killed Jurkat target cells to which they were conjugated, the substitution to tryptophan at position 225 resulted in expression of a truncated ( approximately 45 kD) form of the protein, complete loss of cytotoxicity, and failure to traffic to rat basophil leukemia secretory granules. By contrast, G429E perforin was correctly processed, stored, and released, but the rat basophil leukemia cells possessed reduced cytotoxicity. The defective function of G429E perforin mapped downstream of exocytosis and was due to its reduced ability to bind lipid membranes in a calcium-dependent manner. This study elucidates the cellular basis for perforin dysfunctions in hemophagocytic lymphohistiocytosis and provides the means for studying structure-function relationships for lymphocyte perforin.