Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 12
  • Item
    No Preview Available
    The Role of Systemic Therapies in the Management of Soft Tissue Sarcoma
    Burdett, N ; Bae, S ; Hamilton, A ; Desai, J (Springer Singapore, 2021)
  • Item
    Thumbnail Image
    Phase 1 trial of olaparib and oral cyclophosphamide in BRCA breast cancer, recurrent BRCA ovarian cancer, non-BRCA triple-negative breast cancer, and non-BRCA ovarian cancer
    Lee, CK ; Scott, C ; Lindeman, GJ ; Hamilton, A ; Lieschke, E ; Gibbs, E ; Asher, R ; Badger, H ; Paterson, R ; Macnab, L ; Kwan, EM ; Francis, PA ; Boyle, F ; Friedlander, M (NATURE PUBLISHING GROUP, 2019-02-05)
    BACKGROUND: We conducted a Phase 1 study to evaluate safety and activity of olaparib tablets and oral cyclophosphamide. METHODS: Patients had metastatic breast cancer (BC) or recurrent high-grade serous ovarian cancer (HGSOC), performance status 0-2, and ≤3 lines of prior therapy. Patients were treated using a dose escalation strategy with cohort expansion once maximal tolerated dose (MTD) was determined. Dose level 1 (DL1): olaparib 300 mg bid, cyclophosphamide 50 mg on days 1, 3, and 5, weekly. DL2: olaparib 300 mg bid, cyclophosphamide 50 mg, days 1-5 weekly. RESULTS: Of 32 patients, 23 had HGSOC (germline BRCA mutation [gBRCAm] 70%) and 9 had BC (gBRCAm 67%). Four were treated at DL1 and 28 at DL2, the MTD. Haematological adverse events (AEs) were most common: grade 3/4 AEs: lymphopenia 75%, anaemia 31%, neutropenia 37%, thrombocytopenia 47%. Two permanently discontinued treatment due to haematological AEs. In BC, no objective response was reported. Unconfirmed objective response was 48% and 64% for all HGSOC and gBRCAm subset, respectively. CA125 responses were 70% (all HGSOC) and 92% (gBRCAm). CONCLUSIONS: In HGSOC and BC, olaparib 300 mg bid and cyclophosphamide 50 mg on days 1-5 weekly were tolerable and active, particularly in gBRCAm, and is worthy of further investigation.
  • Item
    Thumbnail Image
    High-coverage whole-genome analysis of 1220 cancers reveals hundreds of genes deregulated by rearrangement-mediated cis-regulatory alterations
    Zhang, Y ; Chen, F ; Fonseca, NA ; He, Y ; Fujita, M ; Nakagawa, H ; Zhang, Z ; Brazma, A ; Creighton, CJ (NATURE PUBLISHING GROUP, 2020-02-05)
    The impact of somatic structural variants (SVs) on gene expression in cancer is largely unknown. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole-genome sequencing data and RNA sequencing from a common set of 1220 cancer cases, we report hundreds of genes for which the presence within 100 kb of an SV breakpoint associates with altered expression. For the majority of these genes, expression increases rather than decreases with corresponding breakpoint events. Up-regulated cancer-associated genes impacted by this phenomenon include TERT, MDM2, CDK4, ERBB2, CD274, PDCD1LG2, and IGF2. TERT-associated breakpoints involve ~3% of cases, most frequently in liver biliary, melanoma, sarcoma, stomach, and kidney cancers. SVs associated with up-regulation of PD1 and PDL1 genes involve ~1% of non-amplified cases. For many genes, SVs are significantly associated with increased numbers or greater proximity of enhancer regulatory elements near the gene. DNA methylation near the promoter is often increased with nearby SV breakpoint, which may involve inactivation of repressor elements.
  • Item
    Thumbnail Image
    Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing
    Cortes-Ciriano, I ; Lee, JJ-K ; Xi, R ; Jain, D ; Jung, YL ; Yang, L ; Gordenin, D ; Klimczak, LJ ; Zhang, C-Z ; Pellman, DS ; Park, PJ ; Akdemir, KC ; Alvarez, EG ; Baez-Ortega, A ; Beroukhim, R ; Boutros, PC ; Bowtell, DDL ; Brors, B ; Burns, KH ; Campbell, PJ ; Chan, K ; Chen, K ; Dueso-Barroso, A ; Dunford, AJ ; Edwards, PA ; Estivill, X ; Etemadmoghadam, D ; Feuerbach, L ; Fink, JL ; Frenkel-Morgenstern, M ; Garsed, DW ; Gerstein, M ; Gordenin, DA ; Haan, D ; Haber, JE ; Hess, JM ; Hutter, B ; Imielinski, M ; Jones, DTW ; Ju, YS ; Kazanov, MD ; Koh, Y ; Korbel, JO ; Kumar, K ; Lee, EA ; Li, Y ; Lynch, AG ; Macintyre, G ; Markowetz, F ; Martincorena, I ; Martinez-Fundichely, A ; Miyano, S ; Nakagawa, H ; Navarro, FCP ; Ossowski, S ; Pearson, J ; Puiggros, M ; Rippe, K ; Roberts, ND ; Roberts, SA ; Rodriguez-Martin, B ; Schumacher, SE ; Scully, R ; Shackleton, M ; Sidiropoulos, N ; Sieverling, L ; Stewart, C ; Torrents, D ; Tubio, JMC ; Villasante, I ; Waddell, N ; Wala, JA ; Weischenfeldt, J ; Yao, X ; Yoon, S-S ; Zamora, J ; Alsop, K ; Christie, EL ; Fereday, S ; Mileshkin, L ; Mitchell, C ; Thorne, H ; Traficante, N ; Cmero, M ; Cowin, PA ; Hamilton, A ; Mir Arnau, G ; Vedururu, R ; Grimmond, SM ; Hofmann, O ; Morrison, C ; Oien, KA ; Pairojkul, C ; Waring, PM ; van de Vijver, MJ ; Behren, A (Nature Research, 2020-03)
    Chromothripsis is a mutational phenomenon characterized by massive, clustered genomic rearrangements that occurs in cancer and other diseases. Recent studies in selected cancer types have suggested that chromothripsis may be more common than initially inferred from low-resolution copy-number data. Here, as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), we analyze patterns of chromothripsis across 2,658 tumors from 38 cancer types using whole-genome sequencing data. We find that chromothripsis events are pervasive across cancers, with a frequency of more than 50% in several cancer types. Whereas canonical chromothripsis profiles display oscillations between two copy-number states, a considerable fraction of events involve multiple chromosomes and additional structural alterations. In addition to non-homologous end joining, we detect signatures of replication-associated processes and templated insertions. Chromothripsis contributes to oncogene amplification and to inactivation of genes such as mismatch-repair-related genes. These findings show that chromothripsis is a major process that drives genome evolution in human cancer.
  • Item
    Thumbnail Image
    Integrative pathway enrichment analysis of multivariate omics data
    Paczkowska, M ; Barenboim, J ; Sintupisut, N ; Fox, NS ; Zhu, H ; Abd-Rabbo, D ; Mee, MW ; Boutros, PC ; Reimand, J (NATURE PUBLISHING GROUP, 2020-02-05)
    Multi-omics datasets represent distinct aspects of the central dogma of molecular biology. Such high-dimensional molecular profiles pose challenges to data interpretation and hypothesis generation. ActivePathways is an integrative method that discovers significantly enriched pathways across multiple datasets using statistical data fusion, rationalizes contributing evidence and highlights associated genes. As part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2658 cancers across 38 tumor types, we integrated genes with coding and non-coding mutations and revealed frequently mutated pathways and additional cancer genes with infrequent mutations. We also analyzed prognostic molecular pathways by integrating genomic and transcriptomic features of 1780 breast cancers and highlighted associations with immune response and anti-apoptotic signaling. Integration of ChIP-seq and RNA-seq data for master regulators of the Hippo pathway across normal human tissues identified processes of tissue regeneration and stem cell regulation. ActivePathways is a versatile method that improves systems-level understanding of cellular organization in health and disease through integration of multiple molecular datasets and pathway annotations.
  • Item
    Thumbnail Image
    Reconstructing evolutionary trajectories of mutation signature activities in cancer using TrackSig
    Rubanova, Y ; Shi, R ; Harrigan, CF ; Li, R ; Wintersinger, J ; Sahin, N ; Deshwar, A ; PCAWG Evolution and Heterogeneity Working Group, ; Morris, Q ; PCAWG Consortium, (Nature Research (part of Springer Nature), 2020-02-05)
    The type and genomic context of cancer mutations depend on their causes. These causes have been characterized using signatures that represent mutation types that co-occur in the same tumours. However, it remains unclear how mutation processes change during cancer evolution due to the lack of reliable methods to reconstruct evolutionary trajectories of mutational signature activity. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole-genome sequencing data from 2658 cancers across 38 tumour types, we present TrackSig, a new method that reconstructs these trajectories using optimal, joint segmentation and deconvolution of mutation type and allele frequencies from a single tumour sample. In simulations, we find TrackSig has a 3-5% activity reconstruction error, and 12% false detection rate. It outperforms an aggressive baseline in situations with branching evolution, CNA gain, and neutral mutations. Applied to data from 2658 tumours and 38 cancer types, TrackSig permits pan-cancer insight into evolutionary changes in mutational processes.
  • Item
    Thumbnail Image
    Combined burden and functional impact tests for cancer driver discovery using DriverPower
    Shuai, S ; Gallinger, S ; Stein, L (NATURE PORTFOLIO, 2020-02-05)
    The discovery of driver mutations is one of the key motivations for cancer genome sequencing. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2658 cancers across 38 tumour types, we describe DriverPower, a software package that uses mutational burden and functional impact evidence to identify driver mutations in coding and non-coding sites within cancer whole genomes. Using a total of 1373 genomic features derived from public sources, DriverPower's background mutation model explains up to 93% of the regional variance in the mutation rate across multiple tumour types. By incorporating functional impact scores, we are able to further increase the accuracy of driver discovery. Testing across a collection of 2583 cancer genomes from the PCAWG project, DriverPower identifies 217 coding and 95 non-coding driver candidates. Comparing to six published methods used by the PCAWG Drivers and Functional Interpretation Working Group, DriverPower has the highest F1 score for both coding and non-coding driver discovery. This demonstrates that DriverPower is an effective framework for computational driver discovery.
  • Item
    Thumbnail Image
    Pathway and network analysis of more than 2500 whole cancer genomes
    Reyna, MA ; Haan, D ; Paczkowska, M ; Verbeke, LPC ; Vazquez, M ; Kahraman, A ; Pulido-Tamayo, S ; Barenboim, J ; Wadi, L ; Dhingra, P ; Shrestha, R ; Getz, G ; Lawrence, MS ; Pedersen, JS ; Rubin, MA ; Wheeler, DA ; Brunak, S ; Izarzugaza, JMG ; Khurana, E ; Marchal, K ; von Mering, C ; Sahinalp, SC ; Valencia, A ; Reimand, J ; Stuart, JM ; Raphael, BJ (NATURE RESEARCH, 2020-02-05)
    The catalog of cancer driver mutations in protein-coding genes has greatly expanded in the past decade. However, non-coding cancer driver mutations are less well-characterized and only a handful of recurrent non-coding mutations, most notably TERT promoter mutations, have been reported. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2658 cancer across 38 tumor types, we perform multi-faceted pathway and network analyses of non-coding mutations across 2583 whole cancer genomes from 27 tumor types compiled by the ICGC/TCGA PCAWG project that was motivated by the success of pathway and network analyses in prioritizing rare mutations in protein-coding genes. While few non-coding genomic elements are recurrently mutated in this cohort, we identify 93 genes harboring non-coding mutations that cluster into several modules of interacting proteins. Among these are promoter mutations associated with reduced mRNA expression in TP53, TLE4, and TCF4. We find that biological processes had variable proportions of coding and non-coding mutations, with chromatin remodeling and proliferation pathways altered primarily by coding mutations, while developmental pathways, including Wnt and Notch, altered by both coding and non-coding mutations. RNA splicing is primarily altered by non-coding mutations in this cohort, and samples containing non-coding mutations in well-known RNA splicing factors exhibit similar gene expression signatures as samples with coding mutations in these genes. These analyses contribute a new repertoire of possible cancer genes and mechanisms that are altered by non-coding mutations and offer insights into additional cancer vulnerabilities that can be investigated for potential therapeutic treatments.
  • Item
    Thumbnail Image
    Sex differences in oncogenic mutational processes
    Li, CH ; Prokopec, SD ; Sun, RX ; Yousif, F ; Schmitz, N ; Boutros, PC (NATURE PORTFOLIO, 2020-08-28)
    Sex differences have been observed in multiple facets of cancer epidemiology, treatment and biology, and in most cancers outside the sex organs. Efforts to link these clinical differences to specific molecular features have focused on somatic mutations within the coding regions of the genome. Here we report a pan-cancer analysis of sex differences in whole genomes of 1983 tumours of 28 subtypes as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. We both confirm the results of exome studies, and also uncover previously undescribed sex differences. These include sex-biases in coding and non-coding cancer drivers, mutation prevalence and strikingly, in mutational signatures related to underlying mutational processes. These results underline the pervasiveness of molecular sex differences and strengthen the call for increased consideration of sex in molecular cancer research.
  • Item
    No Preview Available
    Exploring the feasibility and utility of exome-scale tumour sequencing in a clinical setting
    Lee, B ; Tran, B ; Hsu, AL ; Taylor, GR ; Fox, SB ; Fellowes, A ; Marquis, R ; Mooi, J ; Desai, J ; Doig, K ; Ekert, P ; Gaff, C ; Herath, D ; Hamilton, A ; James, P ; Roberts, A ; Snyder, R ; Waring, P ; McArthur, G (WILEY, 2018-07)
    BACKGROUND: Technology has progressed from single gene panel to large-scale genomic sequencing. This is raising expectations from clinicians and patients alike. The utility and performance of this technology in a clinical setting needs to be evaluated. AIM: This pilot study investigated the feasibility of using exome-scale sequencing (ESS) to identify molecular drivers within cancers in real-time for Precision Oncology in the clinic. METHODS: Between March 2014 and March 2015, the Victorian Comprehensive Cancer Centre Alliance explored the feasibility and utility of ESS in a pilot study. DNA extracted from the tumour specimens underwent both ESS and targeted 'hotspot' sequencing (TS). Blood was taken for germline analysis. A multi-disciplinary molecular tumour board determined the clinical relevance of identified mutations; in particular, whether they were 'actionable' and/or 'druggable'. RESULTS: Of 23 patients screened, 15 (65%) met the tissue requirements for genomic analysis. TS and ESS were successful in all cases. ESS identified pathogenic somatic variants in 73% (11/15 cases) versus 53% (8/15 cases) using TS. Clinically focused ESS identified 63 variants, consisting of 30 somatic variants (including all 13 identified by TS) and 33 germline variants. Overall, there were 48 unique variants. ESS had a clinical impact in 53% (8/15 cases); 47% (7/15 cases) were referred to the familial cancer clinic, and 'druggable' targets were identified in 53% (8/15 cases). CONCLUSION: ESS of tumour DNA impacted clinical decision-making in 53%, with 20% more pathogenic variants identified through ESS than TS. The identification of germline variants in 47% was an unexpected finding.