Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 1 of 1
  • Item
    Thumbnail Image
    A phase III study of radiotherapy with and without continuous-infusion fluorouracil as palliation for non-small-cell lung cancer
    Ball, D ; Smith, J ; Bishop, J ; Olver, I ; Davis, S ; OBrien, P ; Bernshaw, D ; Ryan, G ; Millward, M (NATURE PUBLISHING GROUP, 1997)
    This study assesses the effect of adding continuous-infusion fluorouracil to palliative thoracic radiation therapy (RT) on the rate and duration of symptom relief in patients with advanced non-small-cell lung cancer (NSCLC). Two hundred eligible patients with NSCLC were randomized to receive either 20 Gy in five daily fractions as palliation for intrathoracic disease or the same RT with concurrent continuous infusion of 1 g m(-2) day(-1) fluorouracil for 5 days. Survival, response and rates of symptom relief in the two groups were compared according to treatment intent, and toxicities were compared according to treatment received. The overall response rate was higher in patients randomized to the combination (29%) than in patients randomized to RT alone (16%) (P = 0.035). However, there were no significant differences between the treatment arms in terms of overall or progression-free survival or in palliation of symptoms. Patients treated with RT plus fluorouracil had significantly more acute toxicity, including nausea and vomiting (P = 0.01), oesophagitis (P = 0.0003), stomatitis (P = 0.0005) and skin reaction (P = 0.003). This study suggests for the first time an interaction between RT and infusional fluorouracil in NSCLC. Although RT plus fluorouracil resulted in a significantly higher response rate than achieved with RT alone, this did not translate into more effective palliation. Because the combination produced significantly more toxicity than RT alone, it is not recommended for the palliative treatment of NSCLC. Nevertheless, these results suggest that opportunities may exist for exploitation of the observed enhancement of antitumour effect in the setting of high-dose radical RT for NSCLC.