Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Cancer immunoediting by the innate immune system in the absence of adaptive immunity
    O'Sullivan, T ; Saddawi-Konefka, R ; Vermi, W ; Koebel, CM ; Arthur, C ; White, JM ; Uppaluri, R ; Andrews, DM ; Ngiow, SF ; Teng, MWL ; Smyth, MJ ; Schreiber, RD ; Bui, JD (ROCKEFELLER UNIV PRESS, 2012-09-24)
    Cancer immunoediting is the process whereby immune cells protect against cancer formation by sculpting the immunogenicity of developing tumors. Although the full process depends on innate and adaptive immunity, it remains unclear whether innate immunity alone is capable of immunoediting. To determine whether the innate immune system can edit tumor cells in the absence of adaptive immunity, we compared the incidence and immunogenicity of 3'methylcholanthrene-induced sarcomas in syngeneic wild-type, RAG2(-/-), and RAG2(-/-)x γc(-/-) mice. We found that innate immune cells could manifest cancer immunoediting activity in the absence of adaptive immunity. This activity required natural killer (NK) cells and interferon γ (IFN-γ), which mediated the induction of M1 macrophages. M1 macrophages could be elicited by administration of CD40 agonists, thereby restoring editing activity in RAG2(-/-)x γc(-/-) mice. Our results suggest that in the absence of adaptive immunity, NK cell production of IFN-γ induces M1 macrophages, which act as important effectors during cancer immunoediting.
  • Item
    Thumbnail Image
    BRAF-targeted therapy and immune responses to melanoma
    Ngiow, SF ; Knight, DA ; Ribas, A ; McArthur, GA ; Smyth, MJ (LANDES BIOSCIENCE, 2013-06-01)
    Type I BRAF inhibitors and immunotherapy constitute two new exciting approaches for the treatment of advanced malignant melanoma. We have recently elucidated a role for host C-C chemokine receptor type 2 (CCR2) in the antineoplastic effects of type I BRAF inhibitors in mice, supporting the therapeutic potential of combining BRAF inhibitors with immunotherapy.
  • Item
    Thumbnail Image
    TIM3+FOXP3+ regulatory T cells are tissue-specific promoters of T-cell dysfunction in cancer
    Sakuishi, K ; Ngiow, SF ; Sullivan, JM ; Teng, MWL ; Kuchroo, VK ; Smyth, MJ ; Anderson, AC (TAYLOR & FRANCIS INC, 2013-04-01)
    T-cell immunoglobulin mucin 3 (TIM3) is an inhibitory molecule that has emerged as a key regulator of dysfunctional or exhausted CD8+ T cells arising in chronic diseases such as cancer. In addition to exhausted CD8+ T cells, highly suppressive regulatory T cells (Tregs) represent a significant barrier against the induction of antitumor immunity. We have found that the majority of intratumoral FOXP3+ Tregs express TIM3. TIM3+ Tregs co-express PD-1, are highly suppressive and comprise a specialized subset of tissue Tregs that are rarely observed in the peripheral tissues or blood of tumor-bearing mice. The co-blockade of the TIM3 and PD-1 signaling pathways in vivo results in the downregulation of molecules associated with TIM3+ Treg suppressor functions. This suggests that the potent clinical efficacy of co-blocking TIM3 and PD-1 signal transduction cascades likely stems from the reversal of T-cell exhaustion combined with the inhibition of regulatory T-cell function in tumor tissues. Interestingly, we find that TIM3+ Tregs accumulate in the tumor tissue prior to the appearance of exhausted CD8+ T cells, and that the depletion of Tregs at this stage interferes with the development of the exhausted phenotype by CD8+ T cells. Collectively, our data indicate that TIM3 marks highly suppressive tissue-resident Tregs that play an important role in shaping the antitumor immune response in situ, increasing the value of TIM3-targeting therapeutic strategies against cancer.
  • Item
    No Preview Available
    Host immunity contributes to the anti-melanoma activity of BRAF inhibitors (Retracted Article)
    Knight, DA ; Ngiow, SF ; Li, M ; Parmenter, T ; Mok, S ; Cass, A ; Haynes, NM ; Kinross, K ; Yagita, H ; Koya, RC ; Graeber, TG ; Ribas, A ; McArthur, GA ; Smyth, MJ (AMER SOC CLINICAL INVESTIGATION INC, 2013-03)
    The BRAF mutant, BRAF(V600E), is expressed in nearly half of melanomas, and oral BRAF inhibitors induce substantial tumor regression in patients with BRAF(V600E) metastatic melanoma. The inhibitors are believed to work primarily by inhibiting BRAF(V600E)-induced oncogenic MAPK signaling; however, some patients treated with BRAF inhibitors exhibit increased tumor immune infiltration, suggesting that a combination of BRAF inhibitors and immunotherapy may be beneficial. We used two relatively resistant variants of Braf(V600E)-driven mouse melanoma (SM1 and SM1WT1) and melanoma-prone mice to determine the role of host immunity in type I BRAF inhibitor PLX4720 antitumor activity. We found that PLX4720 treatment downregulated tumor Ccl2 gene expression and decreased tumor CCL2 expression in both Braf(V600E) mouse melanoma transplants and in de novo melanomas in a manner that was coincident with reduced tumor growth. While PLX4720 did not directly increase tumor immunogenicity, analysis of SM1 tumor-infiltrating leukocytes in PLX4720-treated mice demonstrated a robust increase in CD8(+) T/FoxP3(+)CD4(+) T cell ratio and NK cells. Combination therapy with PLX4720 and anti-CCL2 or agonistic anti-CD137 antibodies demonstrated significant antitumor activity in mouse transplant and de novo tumorigenesis models. These data elucidate a role for host CCR2 in the mechanism of action of type I BRAF inhibitors and support the therapeutic potential of combining BRAF inhibitors with immunotherapy.