Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 9 of 9
  • Item
    Thumbnail Image
    MicroRNA Genes and Their Target 3′-Untranslated Regions Are Infrequently Somatically Mutated in Ovarian Cancers
    Ryland, GL ; Bearfoot, JL ; Doyle, MA ; Boyle, SE ; Choong, DYH ; Rowley, SM ; Tothill, RW ; Gorringe, KL ; Campbell, IG ; Cooney, AJ (PUBLIC LIBRARY SCIENCE, 2012-04-20)
    MicroRNAs are key regulators of gene expression and have been shown to have altered expression in a variety of cancer types, including epithelial ovarian cancer. MiRNA function is most often achieved through binding to the 3'-untranslated region of the target protein coding gene. Mutation screening using massively-parallel sequencing of 712 miRNA genes in 86 ovarian cancer cases identified only 5 mutated miRNA genes, each in a different case. One mutation was located in the mature miRNA, and three mutations were predicted to alter the secondary structure of the miRNA transcript. Screening of the 3'-untranslated region of 18 candidate cancer genes identified one mutation in each of AKT2, EGFR, ERRB2 and CTNNB1. The functional effect of these mutations is unclear, as expression data available for AKT2 and EGFR showed no increase in gene transcript. Mutations in miRNA genes and 3'-untranslated regions are thus uncommon in ovarian cancer.
  • Item
    Thumbnail Image
    Copy Number Analysis Identifies Novel Interactions Between Genomic Loci in Ovarian Cancer
    Gorringe, KL ; George, J ; Anglesio, MS ; Ramakrishna, M ; Etemadmoghadam, D ; Cowin, P ; Sridhar, A ; Williams, LH ; Boyle, SE ; Yanaihara, N ; Okamoto, A ; Urashima, M ; Smyth, GK ; Campbell, IG ; Bowtell, DDL ; Jordan, IK (PUBLIC LIBRARY SCIENCE, 2010-09-10)
    Ovarian cancer is a heterogeneous disease displaying complex genomic alterations, and consequently, it has been difficult to determine the most relevant copy number alterations with the scale of studies to date. We obtained genome-wide copy number alteration (CNA) data from four different SNP array platforms, with a final data set of 398 ovarian tumours, mostly of the serous histological subtype. Frequent CNA aberrations targeted many thousands of genes. However, high-level amplicons and homozygous deletions enabled filtering of this list to the most relevant. The large data set enabled refinement of minimal regions and identification of rare amplicons such as at 1p34 and 20q11. We performed a novel co-occurrence analysis to assess cooperation and exclusivity of CNAs and analysed their relationship to patient outcome. Positive associations were identified between gains on 19 and 20q, gain of 20q and loss of X, and between several regions of loss, particularly 17q. We found weak correlations of CNA at genomic loci such as 19q12 with clinical outcome. We also assessed genomic instability measures and found a correlation of the number of higher amplitude gains with poorer overall survival. By assembling the largest collection of ovarian copy number data to date, we have been able to identify the most frequent aberrations and their interactions.
  • Item
    Thumbnail Image
    Cis-eQTL analysis and functional validation of candidate susceptibility genes for high-grade serous ovarian cancer
    Lawrenson, K ; Li, Q ; Kar, S ; Seo, J-H ; Tyrer, J ; Spindler, TJ ; Lee, J ; Chen, Y ; Karst, A ; Drapkin, R ; Aben, KKH ; Anton-Culver, H ; Antonenkova, N ; Baker, H ; Bandera, EV ; Bean, Y ; Beckmann, MW ; Berchuck, A ; Bisogna, M ; Bjorge, L ; Bogdanova, N ; Brinton, LA ; Brooks-Wilson, A ; Bruinsma, F ; Butzow, R ; Campbell, IG ; Carty, K ; Chang-Claude, J ; Chenevix-Trench, G ; Chen, A ; Chen, Z ; Cook, LS ; Cramer, DW ; Cunningham, JM ; Cybulski, C ; Dansonka-Mieszkowska, A ; Dennis, J ; Dicks, E ; Doherty, JA ; Doerk, T ; Du Bois, A ; Duerst, M ; Eccles, D ; Easton, DT ; Edwards, RP ; Eilber, U ; Ekici, AB ; Fasching, PA ; Fridley, BL ; Gao, Y-T ; Gentry-Maharaj, A ; Giles, GG ; Glasspool, R ; Goode, EL ; Goodman, MT ; Grownwald, J ; Harrington, P ; Harter, P ; Hasmad, HN ; Hein, A ; Heitz, F ; Hildebrandt, MAT ; Hillemanns, P ; Hogdall, E ; Hogdall, C ; Hosono, S ; Iversen, ES ; Jakubowska, A ; James, P ; Jensen, A ; Ji, B-T ; Karlan, BY ; Kjaer, SK ; Kelemen, LE ; Kellar, M ; Kelley, JL ; Kiemeney, LA ; Krakstad, C ; Kupryjanczyk, J ; Lambrechts, D ; Lambrechts, S ; Le, ND ; Lee, AW ; Lele, S ; Leminen, A ; Lester, J ; Levine, DA ; Liang, D ; Lissowska, J ; Lu, K ; Lubinski, J ; Lundvall, L ; Massuger, LFAG ; Matsuo, K ; McGuire, V ; McLaughlin, JR ; Nevanlinna, H ; McNeish, I ; Menon, U ; Modugno, F ; Moysich, KB ; Narod, SA ; Nedergaard, L ; Ness, RB ; Azmi, MAN ; Odunsi, K ; Olson, SH ; Orlow, I ; Orsulic, S ; Weber, RP ; Pearce, CL ; Pejovic, T ; Pelttari, LM ; Permuth-Wey, J ; Phelan, CM ; Pike, MC ; Poole, EM ; Ramus, SJ ; Risch, HA ; Rosen, B ; Rossing, MA ; Rothstein, JH ; Rudolph, A ; Runnebaum, IB ; Rzepecka, IK ; Salvesen, HB ; Schildkraut, JM ; Schwaab, I ; Sellers, TA ; Shu, X-O ; Shvetsov, YB ; Siddiqui, N ; Sieh, W ; Song, H ; Southey, MC ; Sucheston, L ; Tangen, IL ; Teo, S-H ; Terry, KL ; Thompson, PJ ; Timorek, A ; Tsai, Y-Y ; Tworoger, SS ; Van Altena, AM ; Van Nieuwenhuysen, E ; Vergote, I ; Vierkant, RA ; Wang-Gohrke, S ; Walsh, C ; Wentzensen, N ; Whittemore, AS ; Wicklund, KG ; Wilkens, LR ; Woo, Y-L ; Wu, X ; Wu, AH ; Yang, H ; Zheng, W ; Ziogas, A ; Monteiro, A ; Pharoah, PD ; Gayther, SA ; Freedman, ML ; Grp, AOCS ; Bowtell, D ; Webb, PM ; Defazio, A (NATURE RESEARCH, 2015-09)
    Genome-wide association studies have reported 11 regions conferring risk of high-grade serous epithelial ovarian cancer (HGSOC). Expression quantitative trait locus (eQTL) analyses can identify candidate susceptibility genes at risk loci. Here we evaluate cis-eQTL associations at 47 regions associated with HGSOC risk (P≤10(-5)). For three cis-eQTL associations (P<1.4 × 10(-3), FDR<0.05) at 1p36 (CDC42), 1p34 (CDCA8) and 2q31 (HOXD9), we evaluate the functional role of each candidate by perturbing expression of each gene in HGSOC precursor cells. Overexpression of HOXD9 increases anchorage-independent growth, shortens population-doubling time and reduces contact inhibition. Chromosome conformation capture identifies an interaction between rs2857532 and the HOXD9 promoter, suggesting this SNP is a leading causal variant. Transcriptomic profiling after HOXD9 overexpression reveals enrichment of HGSOC risk variants within HOXD9 target genes (P=6 × 10(-10) for risk variants (P<10(-4)) within 10 kb of a HOXD9 target gene in ovarian cells), suggesting a broader role for this network in genetic susceptibility to HGSOC.
  • Item
    Thumbnail Image
    Loss of heterozygosity: what is it good for?
    Ryland, GL ; Doyle, MA ; Goode, D ; Boyle, SE ; Choong, DYH ; Rowley, SM ; Li, J ; Bowtell, DDL ; Tothill, RW ; Campbell, IG ; Gorringe, KL (BMC, 2015-08-01)
    BACKGROUND: Loss of heterozygosity (LOH) is a common genetic event in cancer development, and is known to be involved in the somatic loss of wild-type alleles in many inherited cancer syndromes. The wider involvement of LOH in cancer is assumed to relate to unmasking a somatically mutated tumour suppressor gene through loss of the wild type allele. METHODS: We analysed 86 ovarian carcinomas for mutations in 980 genes selected on the basis of their location in common regions of LOH. RESULTS: We identified 36 significantly mutated genes, but these could only partly account for the quanta of LOH in the samples. Using our own and TCGA data we then evaluated five possible models to explain the selection for non-random accumulation of LOH in ovarian cancer genomes: 1. Classic two-hit hypothesis: high frequency biallelic genetic inactivation of tumour suppressor genes. 2. Epigenetic two-hit hypothesis: biallelic inactivation through methylation and LOH. 3. Multiple alternate-gene biallelic inactivation: low frequency gene disruption. 4. Haplo-insufficiency: Single copy gene disruption. 5. Modified two-hit hypothesis: reduction to homozygosity of low penetrance germline predisposition alleles. We determined that while high-frequency biallelic gene inactivation under model 1 is rare, regions of LOH (particularly copy-number neutral LOH) are enriched for deleterious mutations and increased promoter methylation, while copy-number loss LOH regions are likely to contain under-expressed genes suggestive of haploinsufficiency. Reduction to homozygosity of cancer predisposition SNPs may also play a minor role. CONCLUSION: It is likely that selection for regions of LOH depends on its effect on multiple genes. Selection for copy number neutral LOH may better fit the classic two-hit model whereas selection for copy number loss may be attributed to its effect on multi-gene haploinsufficiency. LOH mapping alone is unlikely to be successful in identifying novel tumour suppressor genes; a combined approach may be more effective.
  • Item
    Thumbnail Image
    MyD88 and TLR4 Expression in Epithelial Ovarian Cancer
    Block, MS ; Vierkant, RA ; Rambau, PF ; Winham, SJ ; Wagner, P ; Traficante, N ; Toloczko, A ; Tiezzi, DG ; Taran, FA ; Sinn, P ; Sieh, W ; Sharma, R ; Rothstein, JH ; Ramon y Cajal, T ; Paz-Ares, L ; Oszurek, O ; Orsulic, S ; Ness, RB ; Nelson, G ; Modugno, F ; Menkiszak, J ; McGuire, V ; McCauley, BM ; Mack, M ; Lubinski, J ; Longacre, TA ; Li, Z ; Lester, J ; Kennedy, CJ ; Kalli, KR ; Jung, AY ; Johnatty, SE ; Jimenez-Linan, M ; Jensen, A ; Intermaggio, MP ; Hung, J ; Herpel, E ; Hernandez, BY ; Hartkopf, AD ; Harnett, PR ; Ghatage, P ; Garcia-Bueno, JM ; Gao, B ; Fereday, S ; Eilber, U ; Edwards, RP ; de Sousa, CB ; de Andrade, JM ; Chudecka-Glaz, A ; Chenevix-Trench, G ; Cazorla, A ; Brucker, SY ; Alsop, J ; Whittemore, AS ; Steed, H ; Staebler, A ; Moysich, KB ; Menon, U ; Koziak, JM ; Kommoss, S ; Kjaer, SK ; Kelemen, LE ; Karlan, BY ; Huntsman, DG ; Hogdall, E ; Gronwald, J ; Goodman, MT ; Gilks, B ; Jose Garcia, M ; Fasching, PA ; de Fazio, A ; Deen, S ; Chang-Claude, J ; dos Reis, FJC ; Campbell, IG ; Brenton, JD ; Bowtell, DD ; Benitez, J ; Pharoah, PDP ; Kobel, M ; Ramus, SJ ; Goode, EL (ELSEVIER SCIENCE INC, 2018-03)
    OBJECTIVE: To evaluate myeloid differentiation primary response gene 88 (MyD88) and Toll-like receptor 4 (TLR4) expression in relation to clinical features of epithelial ovarian cancer, histologic subtypes, and overall survival. PATIENTS AND METHODS: We conducted centralized immunohistochemical staining, semi-quantitative scoring, and survival analysis in 5263 patients participating in the Ovarian Tumor Tissue Analysis consortium. Patients were diagnosed between January 1, 1978, and December 31, 2014, including 2865 high-grade serous ovarian carcinomas (HGSOCs), with more than 12,000 person-years of follow-up time. Tissue microarrays were stained for MyD88 and TLR4, and staining intensity was classified using a 2-tiered system for each marker (weak vs strong). RESULTS: Expression of MyD88 and TLR4 was similar in all histotypes except clear cell ovarian cancer, which showed reduced expression compared with other histotypes (P<.001 for both). In HGSOC, strong MyD88 expression was modestly associated with shortened overall survival (hazard ratio [HR], 1.13; 95% CI, 1.01-1.26; P=.04) but was also associated with advanced stage (P<.001). The expression of TLR4 was not associated with survival. In low-grade serous ovarian cancer (LGSOC), strong expression of both MyD88 and TLR4 was associated with favorable survival (HR [95% CI], 0.49 [0.29-0.84] and 0.44 [0.21-0.89], respectively; P=.009 and P=.02, respectively). CONCLUSION: Results are consistent with an association between strong MyD88 staining and advanced stage and poorer survival in HGSOC and demonstrate correlation between strong MyD88 and TLR4 staining and improved survival in LGSOC, highlighting the biological differences between the 2 serous histotypes.
  • Item
    Thumbnail Image
    Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus
    Lawrenson, K ; Kar, S ; McCue, K ; Kuchenbaeker, K ; Michailidou, K ; Tyrer, J ; Beesley, J ; Ramus, SJ ; Li, Q ; Delgado, MK ; Lee, JM ; Aittomaki, K ; Andrulis, IL ; Anton-Culver, H ; Arndt, V ; Arun, BK ; Arver, B ; Bandera, EV ; Barile, M ; Barkardottir, RB ; Barrowdale, D ; Beckmann, MW ; Benitez, J ; Berchuck, A ; Bisogna, M ; Bjorge, L ; Blomqvist, C ; Blot, W ; Bogdanova, N ; Bojesen, A ; Bojesen, SE ; Bolla, MK ; Bonanni, B ; Borresen-Dale, A-L ; Brauch, H ; Brennan, P ; Brenner, H ; Bruinsma, F ; Brunet, J ; Buhari, SA ; Burwinkel, B ; Butzow, R ; Buys, SS ; Cai, Q ; Caldes, T ; Campbell, I ; Canniotto, R ; Chang-Claude, J ; Chiquette, J ; Choi, J-Y ; Claes, KBM ; Cook, LS ; Cox, A ; Cramer, DW ; Cross, SS ; Cybulski, C ; Czene, K ; Daly, MB ; Damiola, F ; Dansonka-Mieszkowska, A ; Darabi, H ; Dennis, J ; Devilee, P ; Diez, O ; Doherty, JA ; Domchek, SM ; Dorfling, CM ; Doerk, T ; Dumont, M ; Ehrencrona, H ; Ejlertsen, B ; Ellis, S ; Engel, C ; Lee, E ; Evans, DG ; Fasching, PA ; Feliubadalo, L ; Figueroa, J ; Flesch-Janys, D ; Fletcher, O ; Flyger, H ; Foretova, L ; Fostira, F ; Foulkes, WD ; Fridley, BL ; Friedman, E ; Frost, D ; Gambino, G ; Ganz, PA ; Garber, J ; Garcia-Closas, M ; Gentry-Maharaj, A ; Ghoussaini, M ; Giles, GG ; Glasspool, R ; Godwin, AK ; Goldberg, MS ; Goldgar, DE ; Gonzalez-Neira, A ; Goode, EL ; Goodman, MT ; Greene, MH ; Gronwald, J ; Guenel, P ; Haiman, CA ; Hall, P ; Hallberg, E ; Hamann, U ; Hansen, TVO ; Harrington, PA ; Hartman, M ; Hassan, N ; Healey, S ; Heitz, F ; Herzog, J ; Hogdall, E ; Hogdall, CK ; Hogervorst, FBL ; Hollestelle, A ; Hopper, JL ; Hulick, PJ ; Huzarski, T ; Imyanitov, EN ; Isaacs, C ; Ito, H ; Jakubowska, A ; Janavicius, R ; Jensen, A ; John, EM ; Johnson, N ; Kabisch, M ; Kang, D ; Kapuscinski, M ; Karlan, BY ; Khan, S ; Kiemeney, LA ; Kjaer, SK ; Knight, JA ; Konstantopoulou, I ; Kosma, V-M ; Kristensen, V ; Kupryjanczyk, J ; Kwong, A ; de la Hoya, M ; Laitman, Y ; Lambrechts, D ; Le, N ; De Leeneer, K ; Lester, J ; Levine, DA ; Li, J ; Lindblom, A ; Long, J ; Lophatananon, A ; Loud, JT ; Lu, K ; Lubinski, J ; Mannermaa, A ; Manoukian, S ; Le Marchand, L ; Margolin, S ; Marme, F ; Massuger, LFAG ; Matsuo, K ; Mazoyer, S ; McGuffog, L ; McLean, C ; McNeish, I ; Meindl, A ; Menon, U ; Mensenkamp, AR ; Milne, RL ; Montagna, M ; Moysich, KB ; Muir, K ; Mulligan, AM ; Nathanson, KL ; Ness, RB ; Neuhausen, SL ; Nevanlinna, H ; Nord, S ; Nussbaum, RL ; Odunsi, K ; Offit, K ; Olah, E ; Olopade, OI ; Olson, JE ; Olswold, C ; O'Malley, D ; Orlow, I ; Orr, N ; Osorio, A ; Park, SK ; Pearce, CL ; Pejovic, T ; Peterlongo, P ; Pfeiler, G ; Phelan, CM ; Poole, EM ; Pylkas, K ; Radice, P ; Rantala, J ; Rashid, MU ; Rennert, G ; Rhenius, V ; Rhiem, K ; Risch, HA ; Rodriguez, G ; Rossing, MA ; Rudolph, A ; Salvesen, HB ; Sangrajrang, S ; Sawyer, EJ ; Schildkraut, JM ; Schmidt, MK ; Schmutzler, RK ; Sellers, TA ; Seynaeve, C ; Shah, M ; Shen, C-Y ; Shu, X-O ; Sieh, W ; Singer, CF ; Sinilnikova, OM ; Slager, S ; Song, H ; Soucy, P ; Southey, MC ; Stenmark-Askmalm, M ; Stoppa-Lyonnet, D ; Sutter, C ; Swerdlow, A ; Tchatchou, S ; Teixeira, MR ; Teo, SH ; Terry, KL ; Terry, MB ; Thomassen, M ; Tibiletti, MG ; Tihomirova, L ; Tognazzo, S ; Toland, AE ; Tomlinson, I ; Torres, D ; Truong, T ; Tseng, C-C ; Tung, N ; Tworoger, SS ; Vachon, C ; van den Ouweland, AMW ; van Doorn, HC ; van Rensburg, EJ ; Van't Veer, LJ ; Vanderstichele, A ; Vergote, I ; Vijai, J ; Wang, Q ; Wang-Gohrke, S ; Weitzel, JN ; Wentzensen, N ; Whittemore, AS ; Wildiers, H ; Winqvist, R ; Wu, AH ; Yannoukakos, D ; Yoon, S-Y ; Yu, J-C ; Zheng, W ; Zheng, Y ; Khanna, KK ; Simard, J ; Monteiro, AN ; French, JD ; Couch, FJ ; Freedman, ML ; Easton, DF ; Dunning, AM ; Pharoah, PD ; Edwards, SL ; Chenevix-Trench, G ; Antoniou, AC ; Gayther, SA (NATURE PORTFOLIO, 2016-09)
    A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10(-20)), ER-negative BC (P=1.1 × 10(-13)), BRCA1-associated BC (P=7.7 × 10(-16)) and triple negative BC (P-diff=2 × 10(-5)). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10(-3)) and ABHD8 (P<2 × 10(-3)). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3'-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk.
  • Item
    No Preview Available
    Enhanced GAB2 Expression Is Associated with Improved Survival in High-Grade Serous Ovarian Cancer and Sensitivity to PI3K Inhibition
    Davis, SJ ; Sheppard, KE ; Anglesio, MS ; George, J ; Traficante, N ; Fereday, S ; Intermaggio, MP ; Menon, U ; Gentry-Maharaj, A ; Lubinski, J ; Gronwald, J ; Pearce, CL ; Pike, MC ; Wu, A ; Kommoss, S ; Pfisterer, J ; du Bois, A ; Hilpert, F ; Ramus, SJ ; Bowtell, DDL ; Huntsman, DG ; Pearson, RB ; Simpson, KJ ; Campbell, IG ; Gorringe, KL (AMER ASSOC CANCER RESEARCH, 2015-06)
    Identification of genomic alterations defining ovarian carcinoma subtypes may aid the stratification of patients to receive targeted therapies. We characterized high-grade serous ovarian carcinoma (HGSC) for the association of amplified and overexpressed genes with clinical outcome using gene expression data from 499 HGSC patients in the Ovarian Tumor Tissue Analysis cohort for 11 copy number amplified genes: ATP13A4, BMP8B, CACNA1C, CCNE1, DYRK1B, GAB2, PAK4, RAD21, TPX2, ZFP36, and URI. The Australian Ovarian Cancer Study and The Cancer Genome Atlas datasets were also used to assess the correlation between gene expression, patient survival, and tumor classification. In a multivariate analysis, high GAB2 expression was associated with improved overall and progression-free survival (P = 0.03 and 0.02), whereas high BMP8B and ATP13A4 were associated with improved progression-free survival (P = 0.004 and P = 0.02). GAB2 overexpression and copy number gain were enriched in the AOCS C4 subgroup. High GAB2 expression correlated with enhanced sensitivity in vitro to the dual PI3K/mTOR inhibitor PF-04691502 and could be used as a genomic marker for identifying patients who will respond to treatments inhibiting PI3K signaling.
  • Item
    Thumbnail Image
    Mutational landscape of mucinous ovarian carcinoma and its neoplastic precursors
    Ryland, GL ; Hunter, SM ; Doyle, MA ; Caramia, F ; Li, J ; Rowley, SM ; Christie, M ; Allan, PE ; Stephens, AN ; Bowtell, DDL ; Campbell, IG ; Gorringe, KL (BMC, 2015-08-07)
    BACKGROUND: Mucinous ovarian tumors are an unusual group of rare neoplasms with an apparently clear progression from benign to borderline to carcinoma, yet with a controversial cell of origin in the ovarian surface epithelium. They are thought to be molecularly distinct from other ovarian tumors but there have been no exome-level sequencing studies performed to date. METHODS: To understand the genetic etiology of mucinous ovarian tumors and assess the presence of novel therapeutic targets or pathways, we undertook exome sequencing of 24 tumors encompassing benign (5), borderline (8) and carcinoma (11) histologies and also assessed a validation cohort of 58 tumors for specific gene regions including exons 4-9 of TP53. RESULTS: The predominant mutational signature was of C>T transitions in a NpCpG context, indicative of deamination of methyl-cytosines. As well as mutations in known drivers (KRAS, BRAF and CDKN2A), we identified a high percentage of carcinomas with TP53 mutations (52 %), and recurrent mutations in RNF43, ELF3, GNAS, ERBB3 and KLF5. CONCLUSIONS: The diversity of mutational targets suggests multiple routes to tumorigenesis in this heterogeneous group of tumors that is generally distinct from other ovarian subtypes.
  • Item
    Thumbnail Image
    Molecular profiling of low grade serous ovarian tumours identifies novel candidate driver genes
    Hunter, SM ; Anglesio, MS ; Ryland, GL ; Sharma, R ; Chiew, YE ; Rowley, SM ; Doyle, MA ; Li, J ; Gilks, CB ; Moss, P ; Allan, PE ; Stephens, AN ; Huntsman, DG ; deFazio, A ; Bowtell, DD ; Australian Ovarian Cancer Study, G ; Gorringe, KL ; Campbell, IG (Impact Journals, 2015-11-10)
    Low grade serous ovarian tumours are a rare and under-characterised histological subtype of epithelial ovarian tumours, with little known of the molecular drivers and facilitators of tumorigenesis beyond classic oncogenic RAS/RAF mutations. With a move towards targeted therapies due to the chemoresistant nature of this subtype, it is pertinent to more fully characterise the genetic events driving this tumour type, some of which may influence response to therapy and/or development of drug resistance. We performed genome-wide high-resolution genomic copy number analysis (Affymetrix SNP6.0) and mutation hotspot screening (KRAS, BRAF, NRAS, HRAS, ERBB2 and TP53) to compare a large cohort of ovarian serous borderline tumours (SBTs, n = 57) with low grade serous carcinomas (LGSCs, n = 19). Whole exome sequencing was performed for 13 SBTs, nine LGSCs and one mixed low/high grade carcinoma. Copy number aberrations were detected in 61% (35/57) of SBTs, compared to 100% (19/19) of LGSCs. Oncogenic RAS/RAF/ERBB2 mutations were detected in 82.5% (47/57) of SBTs compared to 63% (12/19) of LGSCs, with NRAS mutations detected only in LGSC. Some copy number aberrations appeared to be enriched in LGSC, most significantly loss of 9p and homozygous deletions of the CDKN2A/2B locus. Exome sequencing identified BRAF, KRAS, NRAS, USP9X and EIF1AX as the most frequently mutated genes. We have identified markers of progression from borderline to LGSC and novel drivers of LGSC. USP9X and EIF1AX have both been linked to regulation of mTOR, suggesting that mTOR inhibitors may be a key companion treatment for targeted therapy trials of MEK and RAF inhibitors.