Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 37
  • Item
    Thumbnail Image
    Benign breast disease increases breast cancer risk independent of underlying familial risk profile: Findings from a Prospective Family Study Cohort
    Zeinomar, N ; Phillips, K-A ; Daly, MB ; Milne, RL ; Dite, GS ; MacInnis, RJ ; Liao, Y ; Kehm, RD ; Knight, JA ; Southey, MC ; Chung, WK ; Giles, GG ; McLachlan, S-A ; Friedlander, ML ; Weideman, PC ; Glendon, G ; Nesci, S ; Andrulis, IL ; Buys, SS ; John, EM ; Hopper, JL ; Terry, MB (WILEY, 2019-07-15)
    Benign breast disease (BBD) is an established breast cancer (BC) risk factor, but it is unclear whether the magnitude of the association applies to women at familial or genetic risk. This information is needed to improve BC risk assessment in clinical settings. Using the Prospective Family Study Cohort, we used Cox proportional hazards models to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for the association of BBD with BC risk. We also examined whether the association with BBD differed by underlying familial risk profile (FRP), calculated using absolute risk estimates from the Breast Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm (BOADICEA) model. During 176,756 person-years of follow-up (median: 10.9 years, maximum: 23.7) of 17,154 women unaffected with BC at baseline, we observed 968 incident cases of BC. A total of 4,704 (27%) women reported a history of BBD diagnosis at baseline. A history of BBD was associated with a greater risk of BC: HR = 1.31 (95% CI: 1.14-1.50), and did not differ by underlying FRP, with HRs of 1.35 (95% CI: 1.11-1.65), 1.26 (95% CI: 1.00-1.60), and 1.40 (95% CI: 1.01-1.93), for categories of full-lifetime BOADICEA score <20%, 20 to <35%, ≥35%, respectively. There was no difference in the association for women with BRCA1 mutations (HR: 1.64; 95% CI: 1.04-2.58), women with BRCA2 mutations (HR: 1.34; 95% CI: 0.78-2.3) or for women without a known BRCA1 or BRCA2 mutation (HR: 1.31; 95% CI: 1.13-1.53) (pinteraction  = 0.95). Women with a history of BBD have an increased risk of BC that is independent of, and multiplies, their underlying familial and genetic risk.
  • Item
    Thumbnail Image
    rs495139 in the TYMS-ENOSF1 Region and Risk of Ovarian Carcinoma of Mucinous Histology
    Kelemen, LE ; Earp, M ; Fridley, BL ; Chenevix-Trench, G ; Fasching, PA ; Beckmann, MW ; Ekici, AB ; Hein, A ; Lambrechts, D ; Lambrechts, S ; Van Nieuwenhuysen, E ; Vergote, I ; Rossing, MA ; Doherty, JA ; Chang-Claude, J ; Behrens, S ; Moysich, KB ; Cannioto, R ; Lele, S ; Odunsi, K ; Goodman, MT ; Shvetsov, YB ; Thompson, PJ ; Wilkens, LR ; Doerk, T ; Antonenkova, N ; Bogdanova, N ; Hillemanns, P ; Runnebaum, IB ; du Bois, A ; Harter, P ; Heitz, F ; Schwaab, I ; Butzow, R ; Pelttari, LM ; Nevanlinna, H ; Modugno, F ; Edwards, RP ; Kelley, JL ; Ness, RB ; Karlan, BY ; Lester, J ; Orsulic, S ; Walsh, C ; Kjaer, SK ; Jensen, A ; Cunningham, JM ; Vierkant, RA ; Giles, GG ; Bruinsma, F ; Southey, MC ; Hildebrandt, MAT ; Liang, D ; Lu, K ; Wu, X ; Sellers, TA ; Levine, DA ; Schildkraut, JM ; Iversen, ES ; Terry, KL ; Cramer, DW ; Tworoger, SS ; Poole, EM ; Bandera, EV ; Olson, SH ; Orlow, I ; Thomsen, LCV ; Bjorge, L ; Krakstad, C ; Tangen, IL ; Kiemeney, LA ; Aben, KKH ; Massuger, LFAG ; van Altena, AM ; Pejovic, T ; Bean, Y ; Kellar, M ; Cook, LS ; Le, ND ; Brooks-Wilson, A ; Gronwald, J ; Cybulski, C ; Jakubowska, A ; Lubinski, J ; Wentzensen, N ; Brinton, LA ; Lissowska, J ; Hogdall, E ; Engelholm, SA ; Hogdall, C ; Lundvall, L ; Nedergaard, L ; Pharoah, PDP ; Dicks, E ; Song, H ; Tyrer, JP ; McNeish, I ; Siddiqui, N ; Carty, K ; Glasspool, R ; Paul, J ; Campbell, IG ; Eccles, D ; Whittemore, AS ; McGuire, V ; Rothstein, JH ; Sieh, W ; Narod, SA ; Phelan, CM ; McLaughlin, JR ; Risch, HA ; Anton-Culver, H ; Ziogas, A ; Menon, U ; Gayther, SA ; Gentry-Maharaj, A ; Ramus, SJ ; Wu, AH ; Pearce, CL ; Lee, AW ; Pike, MC ; Kupryjanczyk, J ; Podgorska, A ; Plisiecka-Halasa, J ; Sawicki, W ; Goode, EL ; Berchuck, A (MDPI, 2018-09)
    Thymidylate synthase (TYMS) is a crucial enzyme for DNA synthesis. TYMS expression is regulated by its antisense mRNA, ENOSF1. Disrupted regulation may promote uncontrolled DNA synthesis and tumor growth. We sought to replicate our previously reported association between rs495139 in the TYMS-ENOSF1 3' gene region and increased risk of mucinous ovarian carcinoma (MOC) in an independent sample. Genotypes from 24,351 controls to 15,000 women with invasive OC, including 665 MOC, were available. We estimated per-allele odds ratios (OR) and 95% confidence intervals (CI) using unconditional logistic regression, and meta-analysis when combining these data with our previous report. The association between rs495139 and MOC was not significant in the independent sample (OR = 1.09; 95% CI = 0.97⁻1.22; p = 0.15; N = 665 cases). Meta-analysis suggested a weak association (OR = 1.13; 95% CI = 1.03⁻1.24; p = 0.01; N = 1019 cases). No significant association with risk of other OC histologic types was observed (p = 0.05 for tumor heterogeneity). In expression quantitative trait locus (eQTL) analysis, the rs495139 allele was positively associated with ENOSF1 mRNA expression in normal tissues of the gastrointestinal system, particularly esophageal mucosa (r = 0.51, p = 1.7 × 10-28), and nonsignificantly in five MOC tumors. The association results, along with inconclusive tumor eQTL findings, suggest that a true effect of rs495139 might be small.
  • Item
    Thumbnail Image
    Body mass index and breast cancer survival: a Mendelian randomization analysis
    Guo, Q ; Burgess, S ; Turman, C ; Bolla, MK ; Wang, Q ; Lush, M ; Abraham, J ; Aittomaki, K ; Andrulis, IL ; Apicella, C ; Arndt, V ; Barrdahl, M ; Benitez, J ; Berg, CD ; Blomqvist, C ; Bojesen, SE ; Bonanni, B ; Brand, JS ; Brenner, H ; Broeks, A ; Burwinkel, B ; Caldas, C ; Campa, D ; Canzian, F ; Chang-Claude, J ; Chanock, SJ ; Chin, S-F ; Couch, FJ ; Cox, A ; Cross, SS ; Cybulski, C ; Czene, K ; Darabi, H ; Devilee, P ; Diver, WR ; Dunning, AM ; Earl, HM ; Eccles, DM ; Ekici, AB ; Eriksson, M ; Evans, DG ; Fasching, PA ; Figueroa, J ; Flesch-Janys, D ; Flyger, H ; Gapstur, SM ; Gaudet, MM ; Giles, GG ; Glendon, G ; Grip, M ; Gronwald, J ; Haeberle, L ; Haiman, CA ; Hall, P ; Hamann, U ; Hankinson, S ; Hartikainen, JM ; Hein, A ; Hiller, L ; Hogervorst, FB ; Holleczek, B ; Hooning, MJ ; Hoover, RN ; Humphreys, K ; Hunter, DJ ; Husing, A ; Jakubowska, A ; Jukkola-Vuorinen, A ; Kaaks, R ; Kabisch, M ; Kataja, V ; Knight, JA ; Koppert, LB ; Kosma, V-M ; Kristensen, VN ; Lambrechts, D ; Le Marchand, L ; Li, J ; Lindblom, A ; Lindstrom, S ; Lissowska, J ; Lubinski, J ; Machiela, MJ ; Mannermaa, A ; Manoukian, S ; Margolin, S ; Marme, F ; Martens, JWM ; McLean, C ; Menendez, P ; Milne, RL ; Mulligan, AM ; Muranen, TA ; Nevanlinna, H ; Neven, P ; Nielsen, SF ; Nordestgaard, BG ; Olson, JE ; Perez, JIA ; Peterlongo, P ; Phillips, K-A ; Poole, CJ ; Pylkas, K ; Radice, P ; Rahman, N ; Rudiger, T ; Rudolph, A ; Sawyer, EJ ; Schumacher, F ; Seibold, P ; Seynaeve, C ; Shah, M ; Smeets, A ; Southey, MC ; Tollenaar, RAEM ; Tomlinson, I ; Tsimiklis, H ; Ulmer, H-U ; Vachon, C ; van den Ouweland, AMW ; Van't Veer, LJ ; Wildiers, H ; Willett, W ; Winqvist, R ; Zamora, MP ; Chenevix-Trench, G ; Dork, T ; Easton, DF ; Garcia-Closas, M ; Kraft, P ; Hopper, JL ; Zheng, W ; Schmidt, MK ; Pharoah, PDP (OXFORD UNIV PRESS, 2017-12)
    BACKGROUND: There is increasing evidence that elevated body mass index (BMI) is associated with reduced survival for women with breast cancer. However, the underlying reasons remain unclear. We conducted a Mendelian randomization analysis to investigate a possible causal role of BMI in survival from breast cancer. METHODS: We used individual-level data from six large breast cancer case-cohorts including a total of 36 210 individuals (2475 events) of European ancestry. We created a BMI genetic risk score (GRS) based on genotypes at 94 known BMI-associated genetic variants. Association between the BMI genetic score and breast cancer survival was analysed by Cox regression for each study separately. Study-specific hazard ratios were pooled using fixed-effect meta-analysis. RESULTS: BMI genetic score was found to be associated with reduced breast cancer-specific survival for estrogen receptor (ER)-positive cases [hazard ratio (HR) = 1.11, per one-unit increment of GRS, 95% confidence interval (CI) 1.01-1.22, P = 0.03). We observed no association for ER-negative cases (HR = 1.00, per one-unit increment of GRS, 95% CI 0.89-1.13, P = 0.95). CONCLUSIONS: Our findings suggest a causal effect of increased BMI on reduced breast cancer survival for ER-positive breast cancer. There is no evidence of a causal effect of higher BMI on survival for ER-negative breast cancer cases.
  • Item
    No Preview Available
    Identification of six new susceptibility loci for invasive epithelial ovarian cancer
    Kuchenbaecker, KB ; Ramus, SJ ; Tyrer, J ; Lee, A ; Shen, HC ; Beesley, J ; Lawrenson, K ; McGuffog, L ; Healey, S ; Lee, JM ; Spindler, TJ ; Lin, YG ; Pejovic, T ; Bean, Y ; Li, Q ; Coetzee, S ; Hazelett, D ; Miron, A ; Southey, M ; Terry, MB ; Goldgar, DE ; Buys, SS ; Janavicius, R ; Dorfling, CM ; van Rensburg, EJ ; Neuhausen, SL ; Ding, YC ; Hansen, TVO ; Jonson, L ; Gerdes, A-M ; Ejlertsen, B ; Barrowdale, D ; Dennis, J ; Benitez, J ; Osorio, A ; Garcia, MJ ; Komenaka, I ; Weitzel, JN ; Ganschow, P ; Peterlongo, P ; Bernard, L ; Viel, A ; Bonanni, B ; Peissel, B ; Manoukian, S ; Radice, P ; Papi, L ; Ottini, L ; Fostira, F ; Konstantopoulou, I ; Garber, J ; Frost, D ; Perkins, J ; Platte, R ; Ellis, S ; Godwin, AK ; Schmutzler, RK ; Meindl, A ; Engel, C ; Sutter, C ; Sinilnikova, OM ; Damiola, F ; Mazoyer, S ; Stoppa-Lyonnet, D ; Claes, K ; De Leeneer, K ; Kirk, J ; Rodriguez, GC ; Piedmonte, M ; O'Malley, DM ; de la Hoya, M ; Caldes, T ; Aittomaeki, K ; Nevanlinna, H ; Collee, JM ; Rookus, MA ; Oosterwijk, JC ; Tihomirova, L ; Tung, N ; Hamann, U ; Isaccs, C ; Tischkowitz, M ; Imyanitov, EN ; Caligo, MA ; Campbell, IG ; Hogervorst, FBL ; Olah, E ; Diez, O ; Blanco, I ; Brunet, J ; Lazaroso, C ; Angel Pujana, M ; Jakubowska, A ; Gronwald, J ; Lubinski, J ; Sukiennicki, G ; Barkardottir, RB ; Plante, M ; Simard, J ; Soucy, P ; Montagna, M ; Tognazzo, S ; Teixeira, MR ; Pankratz, VS ; Wang, X ; Lindor, N ; Szabo, CI ; Kauff, N ; Vijai, J ; Aghajanian, CA ; Pfeiler, G ; Berger, A ; Singer, CF ; Tea, M-K ; Phelan, CM ; Greene, MH ; Mai, PL ; Rennert, G ; Mulligan, AM ; Tchatchou, S ; Andrulis, IL ; Glendon, G ; Toland, AE ; Jensen, UB ; Kruse, TA ; Thomassen, M ; Bojesen, A ; Zidan, J ; Friedman, E ; Laitman, Y ; Soller, M ; Liljegren, A ; Arver, B ; Einbeigi, Z ; Stenmark-Askmalm, M ; Olopade, OI ; Nussbaum, RL ; Rebbeck, TR ; Nathanson, KL ; Domchek, SM ; Lu, KH ; Karlan, BY ; Walsh, C ; Lester, J ; Hein, A ; Ekici, AB ; Beckmann, MW ; Fasching, PA ; Lambrechts, D ; Van Nieuwenhuysen, E ; Vergote, I ; Lambrechts, S ; Dicks, E ; Doherty, JA ; Wicklund, KG ; Rossing, MA ; Rudolph, A ; Chang-Claude, J ; Wang-Gohrke, S ; Eilber, U ; Moysich, KB ; Odunsi, K ; Sucheston, L ; Lele, S ; Wilkens, LR ; Goodman, MT ; Thompson, PJ ; Shvetsov, YB ; Runnebaum, IB ; Duerst, M ; Hillemanns, P ; Doerk, T ; Antonenkova, N ; Bogdanova, N ; Leminen, A ; Pelttari, LM ; Butzow, R ; Modugno, F ; Kelley, JL ; Edwards, RP ; Ness, RB ; du Bois, A ; Heitz, F ; Schwaab, I ; Harter, P ; Matsuo, K ; Hosono, S ; Orsulic, S ; Jensen, A ; Kjaer, SK ; Hogdall, E ; Hasmad, HN ; Azmi, MAN ; Teo, S-H ; Woo, Y-L ; Fridley, BL ; Goode, EL ; Cunningham, JM ; Vierkant, RA ; Bruinsma, F ; Giles, GG ; Liang, D ; Hildebrandt, MAT ; Wu, X ; Levine, DA ; Bisogna, M ; Berchuck, A ; Iversen, ES ; Schildkraut, JM ; Concannon, P ; Weber, RP ; Cramer, DW ; Terry, KL ; Poole, EM ; Tworoger, SS ; Bandera, EV ; Orlow, I ; Olson, SH ; Krakstad, C ; Salvesen, HB ; Tangen, IL ; Bjorge, L ; van Altena, AM ; Aben, KKH ; Kiemeney, LA ; Massuger, LFAG ; Kellar, M ; Brooks-Wilson, A ; Kelemen, LE ; Cook, LS ; Le, ND ; Cybulski, C ; Yang, H ; Lissowska, J ; Brinton, LA ; Wentzensen, N ; Hogdall, C ; Lundvall, L ; Nedergaard, L ; Baker, H ; Song, H ; Eccles, D ; McNeish, I ; Paul, J ; Carty, K ; Siddiqui, N ; Glasspool, R ; Whittemore, AS ; Rothstein, JH ; McGuire, V ; Sieh, W ; Ji, B-T ; Zheng, W ; Shu, X-O ; Gao, Y-T ; Rosen, B ; Risch, HA ; McLaughlin, JR ; Narod, SA ; Monteiro, AN ; Chen, A ; Lin, H-Y ; Permuth-Wey, J ; Sellers, TA ; Tsai, Y-Y ; Chen, Z ; Ziogas, A ; Anton-Culver, H ; Gentry-Maharaj, A ; Menon, U ; Harrington, P ; Lee, AW ; Wu, AH ; Pearce, CL ; Coetzee, G ; Pike, MC ; Dansonka-Mieszkowska, A ; Timorek, A ; Rzepecka, IK ; Kupryjanczyk, J ; Freedman, M ; Noushmehr, H ; Easton, DF ; Offit, K ; Couch, FJ ; Gayther, S ; Pharoah, PP ; Antoniou, AC ; Chenevix-Trench, G (NATURE PORTFOLIO, 2015-02)
    Genome-wide association studies (GWAS) have identified 12 epithelial ovarian cancer (EOC) susceptibility alleles. The pattern of association at these loci is consistent in BRCA1 and BRCA2 mutation carriers who are at high risk of EOC. After imputation to 1000 Genomes Project data, we assessed associations of 11 million genetic variants with EOC risk from 15,437 cases unselected for family history and 30,845 controls and from 15,252 BRCA1 mutation carriers and 8,211 BRCA2 mutation carriers (3,096 with ovarian cancer), and we combined the results in a meta-analysis. This new study design yielded increased statistical power, leading to the discovery of six new EOC susceptibility loci. Variants at 1p36 (nearest gene, WNT4), 4q26 (SYNPO2), 9q34.2 (ABO) and 17q11.2 (ATAD5) were associated with EOC risk, and at 1p34.3 (RSPO1) and 6p22.1 (GPX6) variants were specifically associated with the serous EOC subtype, all with P < 5 × 10(-8). Incorporating these variants into risk assessment tools will improve clinical risk predictions for BRCA1 and BRCA2 mutation carriers.
  • Item
    No Preview Available
    GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer
    Pharoah, PDP ; Tsai, Y-Y ; Ramus, SJ ; Phelan, CM ; Goode, EL ; Lawrenson, K ; Buckley, M ; Fridley, BL ; Tyrer, JP ; Shen, H ; Weber, R ; Karevan, R ; Larson, MC ; Song, H ; Tessier, DC ; Bacot, F ; Vincent, D ; Cunningham, JM ; Dennis, J ; Dicks, E ; Aben, KK ; Anton-Culver, H ; Antonenkova, N ; Armasu, SM ; Baglietto, L ; Bandera, EV ; Beckmann, MW ; Birrer, MJ ; Bloom, G ; Bogdanova, N ; Brenton, JD ; Brinton, LA ; Brooks-Wilson, A ; Brown, R ; Butzow, R ; Campbell, I ; Carney, ME ; Carvalho, RS ; Chang-Claude, J ; Chen, YA ; Chen, Z ; Chow, W-H ; Cicek, MS ; Coetzee, G ; Cook, LS ; Cramer, DW ; Cybulski, C ; Dansonka-Mieszkowska, A ; Despierre, E ; Doherty, JA ; Doerk, T ; du Bois, A ; Duerst, M ; Eccles, D ; Edwards, R ; Ekici, AB ; Fasching, PA ; Fenstermacher, D ; Flanagan, J ; Gao, Y-T ; Garcia-Closas, M ; Gentry-Maharaj, A ; Giles, G ; Gjyshi, A ; Gore, M ; Gronwald, J ; Guo, Q ; Halle, MK ; Harter, P ; Hein, A ; Heitz, F ; Hillemanns, P ; Hoatlin, M ; Hogdall, E ; Hogdall, CK ; Hosono, S ; Jakubowska, A ; Jensen, A ; Kalli, KR ; Karlan, BY ; Kelemen, LE ; Kiemeney, LA ; Kjaer, SK ; Konecny, GE ; Krakstad, C ; Kupryjanczyk, J ; Lambrechts, D ; Lambrechts, S ; Le, ND ; Lee, N ; Lee, J ; Leminen, A ; Lim, BK ; Lissowska, J ; Lubinski, J ; Lundvall, L ; Lurie, G ; Massuger, LFAG ; Matsuo, K ; McGuire, V ; McLaughlin, JR ; Menon, U ; Modugno, F ; Moysich, KB ; Nakanishi, T ; Narod, SA ; Ness, RB ; Nevanlinna, H ; Nickels, S ; Noushmehr, H ; Odunsi, K ; Olson, S ; Orlow, I ; Paul, J ; Pejovic, T ; Pelttari, LM ; Permuth-Wey, J ; Pike, MC ; Poole, EM ; Qu, X ; Risch, HA ; Rodriguez-Rodriguez, L ; Rossing, MA ; Rudolph, A ; Runnebaum, I ; Rzepecka, IK ; Salvesen, HB ; Schwaab, I ; Severi, G ; Shen, H ; Shridhar, V ; Shu, X-O ; Sieh, W ; Southey, MC ; Spellman, P ; Tajima, K ; Teo, S-H ; Terry, KL ; Thompson, PJ ; Timorek, A ; Tworoger, SS ; van Altena, AM ; van den Berg, D ; Vergote, I ; Vierkant, RA ; Vitonis, AF ; Wang-Gohrke, S ; Wentzensen, N ; Whittemore, AS ; Wik, E ; Winterhoff, B ; Woo, YL ; Wu, AH ; Yang, HP ; Zheng, W ; Ziogas, A ; Zulkifli, F ; Goodman, MT ; Hall, P ; Easton, DF ; Pearce, CL ; Berchuck, A ; Chenevix-Trench, G ; Iversen, E ; Monteiro, ANA ; Gayther, SA ; Schildkraut, JM ; Sellers, TA (NATURE PUBLISHING GROUP, 2013-04)
    Genome-wide association studies (GWAS) have identified four susceptibility loci for epithelial ovarian cancer (EOC), with another two suggestive loci reaching near genome-wide significance. We pooled data from a GWAS conducted in North America with another GWAS from the UK. We selected the top 24,551 SNPs for inclusion on the iCOGS custom genotyping array. We performed follow-up genotyping in 18,174 individuals with EOC (cases) and 26,134 controls from 43 studies from the Ovarian Cancer Association Consortium. We validated the two loci at 3q25 and 17q21 that were previously found to have associations close to genome-wide significance and identified three loci newly associated with risk: two loci associated with all EOC subtypes at 8q21 (rs11782652, P = 5.5 × 10(-9)) and 10p12 (rs1243180, P = 1.8 × 10(-8)) and another locus specific to the serous subtype at 17q12 (rs757210, P = 8.1 × 10(-10)). An integrated molecular analysis of genes and regulatory regions at these loci provided evidence for functional mechanisms underlying susceptibility and implicated CHMP4C in the pathogenesis of ovarian cancer.
  • Item
    No Preview Available
    Identification and molecular characterization of a new ovarian cancer susceptibility locus at 17q21.31
    Permuth-Wey, J ; Lawrenson, K ; Shen, HC ; Velkova, A ; Tyrer, JP ; Chen, Z ; Lin, H-Y ; Chen, YA ; Tsai, Y-Y ; Qu, X ; Ramus, SJ ; Karevan, R ; Lee, J ; Lee, N ; Larson, MC ; Aben, KK ; Anton-Culver, H ; Antonenkova, N ; Antoniou, AC ; Armasu, SM ; Bacot, F ; Baglietto, L ; Bandera, EV ; Barnholtz-Sloan, J ; Beckmann, MW ; Birrer, MJ ; Bloom, G ; Bogdanova, N ; Brinton, LA ; Brooks-Wilson, A ; Brown, R ; Butzow, R ; Cai, Q ; Campbell, I ; Chang-Claude, J ; Chanock, S ; Chenevix-Trench, G ; Cheng, JQ ; Cicek, MS ; Coetzee, GA ; Cook, LS ; Couch, FJ ; Cramer, DW ; Cunningham, JM ; Dansonka-Mieszkowska, A ; Despierre, E ; Doherty, JA ; Doerk, T ; du Bois, A ; Duerst, M ; Easton, DF ; Eccles, D ; Edwards, R ; Ekici, AB ; Fasching, PA ; Fenstermacher, DA ; Flanagan, JM ; Garcia-Closas, M ; Gentry-Maharaj, A ; Giles, GG ; Glasspool, RM ; Gonzalez-Bosquet, J ; Goodman, MT ; Gore, M ; Gorski, B ; Gronwald, J ; Hall, P ; Halle, MK ; Harter, P ; Heitz, F ; Hillemanns, P ; Hoatlin, M ; Hogdall, CK ; Hogdall, E ; Hosono, S ; Jakubowska, A ; Jensen, A ; Jim, H ; Kalli, KR ; Karlan, BY ; Kaye, SB ; Kelemen, LE ; Kiemeney, LA ; Kikkawa, F ; Konecny, GE ; Krakstad, C ; Kjaer, SK ; Kupryjanczyk, J ; Lambrechts, D ; Lambrechts, S ; Lancaster, JM ; Le, ND ; Leminen, A ; Levine, DA ; Liang, D ; Lim, BK ; Lin, J ; Lissowska, J ; Lu, KH ; Lubinski, J ; Lurie, G ; Massuger, LFAG ; Matsuo, K ; McGuire, V ; McLaughlin, JR ; Menon, U ; Modugno, F ; Moysich, KB ; Nakanishi, T ; Narod, SA ; Nedergaard, L ; Ness, RB ; Nevanlinna, H ; Nickels, S ; Noushmehr, H ; Odunsi, K ; Olson, SH ; Orlow, I ; Paul, J ; Pearce, CL ; Pejovic, T ; Pelttari, LM ; Pike, MC ; Poole, EM ; Raska, P ; Renner, SP ; Risch, HA ; Rodriguez-Rodriguez, L ; Rossing, MA ; Rudolph, A ; Runnebaum, IB ; Rzepecka, IK ; Salvesen, HB ; Schwaab, I ; Severi, G ; Shridhar, V ; Shu, X-O ; Shvetsov, YB ; Sieh, W ; Song, H ; Southey, MC ; Spiewankiewicz, B ; Stram, D ; Sutphen, R ; Teo, S-H ; Terry, KL ; Tessier, DC ; Thompson, PJ ; Tworoger, SS ; van Altena, AM ; Vergote, I ; Vierkant, RA ; Vincent, D ; Vitonis, AF ; Wang-Gohrke, S ; Weber, RP ; Wentzensen, N ; Whittemore, AS ; Wik, E ; Wilkens, LR ; Winterhoff, B ; Woo, YL ; Wu, AH ; Xiang, Y-B ; Yang, HP ; Zheng, W ; Ziogas, A ; Zulkifli, F ; Phelan, CM ; Iversen, E ; Schildkraut, JM ; Berchuck, A ; Fridley, BL ; Goode, EL ; Pharoah, PDP ; Monteiro, ANA ; Sellers, TA ; Gayther, SA (NATURE RESEARCH, 2013-03)
    Epithelial ovarian cancer (EOC) has a heritable component that remains to be fully characterized. Most identified common susceptibility variants lie in non-protein-coding sequences. We hypothesized that variants in the 3' untranslated region at putative microRNA (miRNA)-binding sites represent functional targets that influence EOC susceptibility. Here, we evaluate the association between 767 miRNA-related single-nucleotide polymorphisms (miRSNPs) and EOC risk in 18,174 EOC cases and 26,134 controls from 43 studies genotyped through the Collaborative Oncological Gene-environment Study. We identify several miRSNPs associated with invasive serous EOC risk (odds ratio=1.12, P=10(-8)) mapping to an inversion polymorphism at 17q21.31. Additional genotyping of non-miRSNPs at 17q21.31 reveals stronger signals outside the inversion (P=10(-10)). Variation at 17q21.31 is associated with neurological diseases, and our collaboration is the first to report an association with EOC susceptibility. An integrated molecular analysis in this region provides evidence for ARHGAP27 and PLEKHM1 as candidate EOC susceptibility genes.
  • Item
    Thumbnail Image
    Morphological predictors of BRCA1 germline mutations in young women with breast cancer
    Southey, MC ; Ramus, SJ ; Dowty, JG ; Smith, LD ; Tesoriero, AA ; Wong, EEM ; Dite, GS ; Jenkins, MA ; Byrnes, GB ; Winship, I ; Phillips, K-A ; Giles, GG ; Hopper, JL (NATURE PUBLISHING GROUP, 2011-03-15)
    BACKGROUND: Knowing a young woman with newly diagnosed breast cancer has a germline BRCA1 mutation informs her clinical management and that of her relatives. We sought an optimal strategy for identifying carriers using family history, breast cancer morphology and hormone receptor status data. METHODS: We studied a population-based sample of 452 Australian women with invasive breast cancer diagnosed before age 40 years for whom we conducted extensive germline mutation testing (29 carried a BRCA1 mutation) and a systematic pathology review, and collected three-generational family history and tumour ER and PR status. Predictors of mutation status were identified using multiple logistic regression. Areas under receiver operator characteristic (ROC) curves were estimated using five-fold stratified cross-validation. RESULTS: The probability of being a BRCA1 mutation carrier increased with number of selected histology features even after adjusting for family history and ER and PR status (P<0.0001). From the most parsimonious multivariate model, the odds ratio for being a carrier were: 9.7 (95% confidence interval: 2.6-47.0) for trabecular growth pattern (P=0.001); 7.8 (2.7-25.7) for mitotic index over 50 mitoses per 10 high-powered field (P=0.0003); and 2.7 (1.3-5.9) for each first-degree relative with breast cancer diagnosed before age 60 years (P=0.01).The area under the ROC curve was 0.87 (0.83-0.90). CONCLUSION: Pathology review, with attention to a few specific morphological features of invasive breast cancers, can identify almost all BRCA1 germline mutation carriers among women with early-onset breast cancer without taking into account family history.
  • Item
    No Preview Available
    Subtyping of Breast Cancer by Immunohistochemistry to Investigate a Relationship between Subtype and Short and Long Term Survival: A Collaborative Analysis of Data for 10,159 Cases from 12 Studies
    Blows, FM ; Driver, KE ; Schmidt, MK ; Broeks, A ; van Leeuwen, FE ; Wesseling, J ; Cheang, MC ; Gelmon, K ; Nielsen, TO ; Blomqvist, C ; Heikkila, P ; Heikkinen, T ; Nevanlinna, H ; Akslen, LA ; Begin, LR ; Foulkes, WD ; Couch, FJ ; Wang, X ; Cafourek, V ; Olson, JE ; Baglietto, L ; Giles, GG ; Severi, G ; McLean, CA ; Southey, MC ; Rakha, E ; Green, AR ; Ellis, IO ; Sherman, ME ; Lissowska, J ; Anderson, WF ; Cox, A ; Cross, SS ; Reed, MWR ; Provenzano, E ; Dawson, S-J ; Dunning, AM ; Humphreys, M ; Easton, DF ; Garcia-Closas, M ; Caldas, C ; Pharoah, PD ; Huntsman, D ; Marincola, FM (PUBLIC LIBRARY SCIENCE, 2010-05)
    BACKGROUND: Immunohistochemical markers are often used to classify breast cancer into subtypes that are biologically distinct and behave differently. The aim of this study was to estimate mortality for patients with the major subtypes of breast cancer as classified using five immunohistochemical markers, to investigate patterns of mortality over time, and to test for heterogeneity by subtype. METHODS AND FINDINGS: We pooled data from more than 10,000 cases of invasive breast cancer from 12 studies that had collected information on hormone receptor status, human epidermal growth factor receptor-2 (HER2) status, and at least one basal marker (cytokeratin [CK]5/6 or epidermal growth factor receptor [EGFR]) together with survival time data. Tumours were classified as luminal and nonluminal tumours according to hormone receptor expression. These two groups were further subdivided according to expression of HER2, and finally, the luminal and nonluminal HER2-negative tumours were categorised according to expression of basal markers. Changes in mortality rates over time differed by subtype. In women with luminal HER2-negative subtypes, mortality rates were constant over time, whereas mortality rates associated with the luminal HER2-positive and nonluminal subtypes tended to peak within 5 y of diagnosis and then decline over time. In the first 5 y after diagnosis the nonluminal tumours were associated with a poorer prognosis, but over longer follow-up times the prognosis was poorer in the luminal subtypes, with the worst prognosis at 15 y being in the luminal HER2-positive tumours. Basal marker expression distinguished the HER2-negative luminal and nonluminal tumours into different subtypes. These patterns were independent of any systemic adjuvant therapy. CONCLUSIONS: The six subtypes of breast cancer defined by expression of five markers show distinct behaviours with important differences in short term and long term prognosis. Application of these markers in the clinical setting could have the potential to improve the targeting of adjuvant chemotherapy to those most likely to benefit. The different patterns of mortality over time also suggest important biological differences between the subtypes that may result in differences in response to specific therapies, and that stratification of breast cancers by clinically relevant subtypes in clinical trials is urgently required.
  • Item
    Thumbnail Image
    A PALB2 mutation associated with high risk of breast cancer
    Southey, MC ; Teo, ZL ; Dowty, JG ; Odefrey, FA ; Park, DJ ; Tischkowitz, M ; Sabbaghian, N ; Apicella, C ; Byrnes, GB ; Winship, I ; Baglietto, L ; Giles, GG ; Goldgar, DE ; Foulkes, WD ; Hopper, JL (BMC, 2010)
    NTRODUCTION: As a group, women who carry germline mutations in partner and localizer of breast cancer 2 susceptibility protein (PALB2) are at increased risk of breast cancer. Little is known about by how much or whether risk differs by mutation or family history, owing to the paucity of studies of cases unselected for family history. METHODS: We screened 1,403 case probands for PALB2 mutations in a population-based study of Australian women with invasive breast cancer stratified by age at onset. The age-specific risk of breast cancer was estimated from the cancer histories of first- and second-degree relatives of mutation-carrying probands using a modified segregation analysis that included a polygenic modifier and was conditioned on the carrier case proband. Further screening for PALB2 c.3113G > A (W1038X) was conducted for 779 families with multiple cases of breast cancer ascertained through family cancer clinics in Australia and New Zealand and 764 population-based controls. RESULTS: We found five independent case probands in the population-based sample with the protein-truncating mutation PALB2 c.3113G > A (W1038X); 2 of 695 were diagnosed before age 40 years and 3 of 708 were diagnosed when between ages 40 and 59 years. Both of the two early-onset carrier case probands had very strong family histories of breast cancer. Further testing found that the mutation segregated with breast cancer in these families. No c.3113G > A (W1038X) carriers were found in 764 population-based unaffected controls. The hazard ratio was estimated to be 30.1 (95% confidence interval (CI), 7.5 to 120; P < 0.0001), and the corresponding cumulative risk estimates were 49% (95% CI, 15 to 93) to age 50 and 91% (95% CI, 44 to 100) to age 70. We found another eight families carrying this mutation in 779 families with multiple cases of breast cancer ascertained through family cancer clinics. CONCLUSIONS: The PALB2 c.3113G > A mutation appears to be associated with substantial risks of breast cancer that are of clinical relevance.
  • Item
    Thumbnail Image
    Contribution of large genomic BRCA1 alterations to early-onset breast cancer selected for family history and tumour morphology: a report from The Breast Cancer Family Registry
    Smith, LD ; Tesoriero, AA ; Wong, EM ; Ramus, SJ ; O'Malley, FP ; Mulligan, AM ; Terry, MB ; Senie, RT ; Santella, RM ; John, EM ; Andrulis, IL ; Ozcelik, H ; Daly, MB ; Godwin, AK ; Buys, SS ; Fox, S ; Goldgar, DE ; Giles, GG ; Hopper, JL ; Southey, MC (BIOMED CENTRAL LTD, 2011)
    INTRODUCTION: Selecting women affected with breast cancer who are most likely to carry a germline mutation in BRCA1 and applying the most appropriate test methodology remains challenging for cancer genetics services. We sought to test the value of selecting women for BRCA1 mutation testing on the basis of family history and/or breast tumour morphology criteria as well as the value of testing for large genomic alterations in BRCA1. METHODS: We studied women participating in the Breast Cancer Family Registry (BCFR), recruited via population-based sampling, who had been diagnosed with breast cancer before the age of 40 years who had a strong family history of breast or ovarian cancer (n = 187) and/or a first primary breast tumour with morphological features consistent with carrying a BRCA1 germline mutation (n = 133; 37 met both criteria). An additional 184 women diagnosed before the age of 40 years who had a strong family history of breast or ovarian cancer and who were not known to carry a germline BRCA1 mutation were selected from among women who had been recruited into the BCFR from clinical genetics services. These 467 women had been screened for BRCA1 germline mutations, and we expanded this testing to include a screen for large genomic BRCA1 alterations using Multiplex Ligation-dependent Probe Amplification. RESULTS: Twelve large genomic BRCA1 alterations were identified, including 10 (4%) of the 283 women selected from among the population-based sample. In total, 18 (12%), 18 (19%) and 16 (43%) BRCA1 mutations were identified in the population-based groups selected on the basis of family history only (n = 150), the group selected on the basis of tumour morphology only (n = 96) and meeting both criteria (n = 37), respectively. CONCLUSIONS: Large genomic alterations accounted for 19% of all BRCA1 mutations identified. This study emphasises the value of combining information about family history, age at diagnosis and tumour morphology when selecting women for germline BRCA1 mutation testing as well as including a screen for large genomic alterations.