Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 19
  • Item
    Thumbnail Image
    Immune and genomic biomarkers of immunotherapy response in cancer of unknown primary
    Posner, A ; Sivakumaran, T ; Pattison, A ; Etemadmoghadam, D ; Thio, N ; Wood, C ; Fisher, K ; Webb, S ; DeFazio, A ; Wilcken, N ; Gao, B ; Karapetis, CS ; Singh, M ; Collins, IM ; Richardson, G ; Steer, C ; Warren, M ; Karanth, N ; Fellowes, A ; Fox, SB ; Hicks, RJ ; Schofield, P ; Bowtell, D ; Prall, OWJ ; Tothill, RW ; Mileshkin, L (BMJ PUBLISHING GROUP, 2023-01)
    BACKGROUND: Cancer of unknown primary (CUP) is a heterogeneous group of metastatic cancers where a primary tissue of origin (TOO) is uncertain. Most patients with CUP have limited treatment options and poor survival outcomes. Immune checkpoint inhibitors (ICIs) can be efficacious in some patients with CUP, but the optimal predictive biomarkers are unknown. We therefore assessed immune and genomic biomarkers as well as predicted TOO in patients with CUP, including a subset treated with ICIs. METHODS: Patients with CUP were subject to gene-expression profiling (GEP) and DNA panel sequencing. Immune and stromal-related gene expression was explored by NanoString, including genes associated with immunotherapy response (IR) in other solid malignancies. ICI responsive cancer types were assigned based on Food and Drug Administration-approved indications, and either detection of a latent primary tumor or the TOO was suspected based on genomics informed pathology review. Tumor mutation burden (TMB) and gene mutations were also assessed. RESULTS: A total of 219 patients with CUP were included, 215 assessed for TOO in a previous study, with the majority (163) receiving both RNA and DNA tests. Of GEP profiled cases, 33% (59/175) had a high IR gene-expression score. Of the DNA sequenced cases, 16% (32/203) had high TMB (>10 mutations/Mb), including two with mismatch repair deficiency. Low correlation was observed between TMB and an IR score (R=0.26, p<0.001). Among 110 CUPs with a latent primary or suspected TOO, 47% (52/110) belonged to ICI-responsive cancer types. More than half of the CUPs had at least one feature that may predict ICI response (high IR score, high TMB, ICI-responsive cancer type). Among patients with CUP treated with ICIs, 8/28 (29%) responded (2 complete responses and 6 partial responses). Among non-responders, 9 had stable and 11 had progressive disease. All responders had a high IR score (7/8) and/or high TMB (3/8), while most (5/8) belonged to ICI-responsive cancer types. These features were detected at a lower frequency in non-responders and mostly in patients with stable disease. CONCLUSIONS: A significant fraction of CUP tumors had genomic features previously associated with ICI response. High IR score was the most sensitive predictive feature of ICI response, warranting evaluation in a larger patient series.
  • Item
    Thumbnail Image
    Synergistic targeting of BRCA1 mutated breast cancers with PARP and CDK2 inhibition
    Aziz, D ; Portman, N ; Fernandez, KJ ; Lee, C ; Alexandrou, S ; Llop-Guevara, A ; Phan, Z ; Yong, A ; Wilkinson, A ; Sergio, CM ; Ferraro, D ; Etemadmoghadam, D ; Bowtell, DD ; Serra, V ; Waring, P ; Lim, E ; Caldon, CE (NATURE PORTFOLIO, 2021-08-31)
    Basal-like breast cancers (BLBC) are aggressive breast cancers that respond poorly to targeted therapies and chemotherapies. In order to define therapeutically targetable subsets of BLBC we examined two markers: cyclin E1 and BRCA1 loss. In high grade serous ovarian cancer (HGSOC) these markers are mutually exclusive, and define therapeutic subsets. We tested the same hypothesis for BLBC. Using a BLBC cohort enriched for BRCA1 loss, we identified convergence between BRCA1 loss and high cyclin E1 protein expression, in contrast to HGSOC in which CCNE1 amplification drives increased cyclin E1. In cell lines, BRCA1 loss was associated with stabilized cyclin E1 during the cell cycle, and BRCA1 siRNA led to increased cyclin E1 in association with reduced phospho-cyclin E1 T62. Mutation of cyclin E1 T62 to alanine increased cyclin E1 stability. We showed that tumors with high cyclin E1/BRCA1 mutation in the BLBC cohort also had decreased phospho-T62, supporting this hypothesis. Since cyclin E1/CDK2 protects cells from DNA damage and cyclin E1 is elevated in BRCA1 mutant cancers, we hypothesized that CDK2 inhibition would sensitize these cancers to PARP inhibition. CDK2 inhibition induced DNA damage and synergized with PARP inhibitors to reduce cell viability in cell lines with homologous recombination deficiency, including BRCA1 mutated cell lines. Treatment of BRCA1 mutant BLBC patient-derived xenograft models with combination PARP and CDK2 inhibition led to tumor regression and increased survival. We conclude that BRCA1 status and high cyclin E1 have potential as predictive biomarkers to dictate the therapeutic use of combination CDK inhibitors/PARP inhibitors in BLBC.
  • Item
    Thumbnail Image
    Genomic analysis of low-grade serous ovarian carcinoma to identify key drivers and therapeutic vulnerabilities
    Cheasley, D ; Nigam, A ; Zethoven, M ; Hunter, S ; Etemadmoghadam, D ; Semple, T ; Allan, P ; Carey, MS ; Fernandez, ML ; Dawson, A ; Kobel, M ; Huntsman, DG ; Le Page, C ; Mes-Masson, A-M ; Provencher, D ; Hacker, N ; Gao, Y ; Bowtell, D ; deFazio, A ; Gorringe, KL ; Campbell, IG (WILEY, 2021-01)
  • Item
    Thumbnail Image
    Genomic footprints of activated telomere maintenance mechanisms in cancer
    Sieverling, L ; Hong, C ; Koser, SD ; Ginsbach, P ; Kleinheinz, K ; Hutter, B ; Braun, DM ; Cortes-Ciriano, I ; Xi, R ; Kabbe, R ; Park, PJ ; Eils, R ; Schlesner, M ; Brors, B ; Rippe, K ; Jones, DTW ; Feuerbach, L (NATURE PORTFOLIO, 2020-02-05)
    Cancers require telomere maintenance mechanisms for unlimited replicative potential. They achieve this through TERT activation or alternative telomere lengthening associated with ATRX or DAXX loss. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, we dissect whole-genome sequencing data of over 2500 matched tumor-control samples from 36 different tumor types aggregated within the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium to characterize the genomic footprints of these mechanisms. While the telomere content of tumors with ATRX or DAXX mutations (ATRX/DAXXtrunc) is increased, tumors with TERT modifications show a moderate decrease of telomere content. One quarter of all tumor samples contain somatic integrations of telomeric sequences into non-telomeric DNA. This fraction is increased to 80% prevalence in ATRX/DAXXtrunc tumors, which carry an aberrant telomere variant repeat (TVR) distribution as another genomic marker. The latter feature includes enrichment or depletion of the previously undescribed singleton TVRs TTCGGG and TTTGGG, respectively. Our systematic analysis provides new insight into the recurrent genomic alterations associated with telomere maintenance mechanisms in cancer.
  • Item
    Thumbnail Image
    High-coverage whole-genome analysis of 1220 cancers reveals hundreds of genes deregulated by rearrangement-mediated cis-regulatory alterations
    Zhang, Y ; Chen, F ; Fonseca, NA ; He, Y ; Fujita, M ; Nakagawa, H ; Zhang, Z ; Brazma, A ; Creighton, CJ (NATURE PUBLISHING GROUP, 2020-02-05)
    The impact of somatic structural variants (SVs) on gene expression in cancer is largely unknown. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole-genome sequencing data and RNA sequencing from a common set of 1220 cancer cases, we report hundreds of genes for which the presence within 100 kb of an SV breakpoint associates with altered expression. For the majority of these genes, expression increases rather than decreases with corresponding breakpoint events. Up-regulated cancer-associated genes impacted by this phenomenon include TERT, MDM2, CDK4, ERBB2, CD274, PDCD1LG2, and IGF2. TERT-associated breakpoints involve ~3% of cases, most frequently in liver biliary, melanoma, sarcoma, stomach, and kidney cancers. SVs associated with up-regulation of PD1 and PDL1 genes involve ~1% of non-amplified cases. For many genes, SVs are significantly associated with increased numbers or greater proximity of enhancer regulatory elements near the gene. DNA methylation near the promoter is often increased with nearby SV breakpoint, which may involve inactivation of repressor elements.
  • Item
    Thumbnail Image
    Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing
    Cortes-Ciriano, I ; Lee, JJ-K ; Xi, R ; Jain, D ; Jung, YL ; Yang, L ; Gordenin, D ; Klimczak, LJ ; Zhang, C-Z ; Pellman, DS ; Park, PJ ; Akdemir, KC ; Alvarez, EG ; Baez-Ortega, A ; Beroukhim, R ; Boutros, PC ; Bowtell, DDL ; Brors, B ; Burns, KH ; Campbell, PJ ; Chan, K ; Chen, K ; Dueso-Barroso, A ; Dunford, AJ ; Edwards, PA ; Estivill, X ; Etemadmoghadam, D ; Feuerbach, L ; Fink, JL ; Frenkel-Morgenstern, M ; Garsed, DW ; Gerstein, M ; Gordenin, DA ; Haan, D ; Haber, JE ; Hess, JM ; Hutter, B ; Imielinski, M ; Jones, DTW ; Ju, YS ; Kazanov, MD ; Koh, Y ; Korbel, JO ; Kumar, K ; Lee, EA ; Li, Y ; Lynch, AG ; Macintyre, G ; Markowetz, F ; Martincorena, I ; Martinez-Fundichely, A ; Miyano, S ; Nakagawa, H ; Navarro, FCP ; Ossowski, S ; Pearson, J ; Puiggros, M ; Rippe, K ; Roberts, ND ; Roberts, SA ; Rodriguez-Martin, B ; Schumacher, SE ; Scully, R ; Shackleton, M ; Sidiropoulos, N ; Sieverling, L ; Stewart, C ; Torrents, D ; Tubio, JMC ; Villasante, I ; Waddell, N ; Wala, JA ; Weischenfeldt, J ; Yao, X ; Yoon, S-S ; Zamora, J ; Alsop, K ; Christie, EL ; Fereday, S ; Mileshkin, L ; Mitchell, C ; Thorne, H ; Traficante, N ; Cmero, M ; Cowin, PA ; Hamilton, A ; Mir Arnau, G ; Vedururu, R ; Grimmond, SM ; Hofmann, O ; Morrison, C ; Oien, KA ; Pairojkul, C ; Waring, PM ; van de Vijver, MJ ; Behren, A (Nature Research, 2020-03)
    Chromothripsis is a mutational phenomenon characterized by massive, clustered genomic rearrangements that occurs in cancer and other diseases. Recent studies in selected cancer types have suggested that chromothripsis may be more common than initially inferred from low-resolution copy-number data. Here, as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), we analyze patterns of chromothripsis across 2,658 tumors from 38 cancer types using whole-genome sequencing data. We find that chromothripsis events are pervasive across cancers, with a frequency of more than 50% in several cancer types. Whereas canonical chromothripsis profiles display oscillations between two copy-number states, a considerable fraction of events involve multiple chromosomes and additional structural alterations. In addition to non-homologous end joining, we detect signatures of replication-associated processes and templated insertions. Chromothripsis contributes to oncogene amplification and to inactivation of genes such as mismatch-repair-related genes. These findings show that chromothripsis is a major process that drives genome evolution in human cancer.
  • Item
    Thumbnail Image
    Disruption of chromatin folding domains by somatic genomic rearrangements in human cancer
    Akdemir, KC ; Le, VT ; Chandran, S ; Li, Y ; Verhaak, RG ; Beroukhim, R ; Campbell, PJ ; Chin, L ; Dixon, JR ; Futreal, PA ; Alvarez, EG ; Baez-Ortega, A ; Beroukhim, R ; Boutros, PC ; Bowtell, DDL ; Brors, B ; Burns, KH ; Chan, K ; Chen, K ; Cortes-Ciriano, I ; Dueso-Barroso, A ; Dunford, AJ ; Edwards, PA ; Estivill, X ; Etemadmoghadam, D ; Feuerbach, L ; Fink, JL ; Frenkel-Morgenstern, M ; Garsed, DW ; Gerstein, M ; Gordenin, DA ; Haan, D ; Haber, JE ; Hess, JM ; Hutter, B ; Imielinski, M ; Jones, DTW ; Ju, YS ; Kazanov, MD ; Klimczak, LJ ; Koh, Y ; Korbel, JO ; Kumar, K ; Lee, EA ; Lee, JJ-K ; Lynch, AG ; Macintyre, G ; Markowetz, F ; Martincorena, I ; Martinez-Fundichely, A ; Meyerson, M ; Miyano, S ; Nakagawa, H ; Navarro, FCP ; Ossowski, S ; Park, PJ ; Pearson, JV ; Puiggros, M ; Rippe, K ; Roberts, ND ; Roberts, SA ; Rodriguez-Martin, B ; Schumacher, SE ; Scully, R ; Shackleton, M ; Sidiropoulos, N ; Sieverling, L ; Stewart, C ; Torrents, D ; Tubio, JMC ; Villasante, I ; Waddell, N ; Wala, JA ; Weischenfeldt, J ; Yang, L ; Yao, X ; Yoon, S-S ; Zamora, J ; Zhang, C-Z (NATURE PORTFOLIO, 2020-03)
    Chromatin is folded into successive layers to organize linear DNA. Genes within the same topologically associating domains (TADs) demonstrate similar expression and histone-modification profiles, and boundaries separating different domains have important roles in reinforcing the stability of these features. Indeed, domain disruptions in human cancers can lead to misregulation of gene expression. However, the frequency of domain disruptions in human cancers remains unclear. Here, as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), which aggregated whole-genome sequencing data from 2,658 cancers across 38 tumor types, we analyzed 288,457 somatic structural variations (SVs) to understand the distributions and effects of SVs across TADs. Notably, SVs can lead to the fusion of discrete TADs, and complex rearrangements markedly change chromatin folding maps in the cancer genomes. Notably, only 14% of the boundary deletions resulted in a change in expression in nearby genes of more than twofold.
  • Item
    Thumbnail Image
    Cancer LncRNA Census reveals evidence for deep functional conservation of long noncoding RNAs in tumorigenesis
    Carlevaro-Fita, J ; Lanzos, A ; Feuerbach, L ; Hong, C ; Mas-Ponte, D ; Pedersen, JS ; Johnson, R ; Abascal, F ; Amin, SB ; Bader, GD ; Barenboim, J ; Beroukhim, R ; Bertl, J ; Boroevich, KA ; Brunak, S ; Campbell, PJ ; Carlevaro-Fita, J ; Chakravarty, D ; Chan, CWY ; Chen, K ; Choi, JK ; Deu-Pons, J ; Dhingra, P ; Diamanti, K ; Feuerbach, L ; Fink, JL ; Fonseca, NA ; Frigola, J ; Gambacorti-Passerini, C ; Garsed, DW ; Gerstein, M ; Getz, G ; Gonzalez-Perez, A ; Guo, Q ; Gut, IG ; Haan, D ; Hamilton, MP ; Haradhvala, NJ ; Harmanci, AO ; Helmy, M ; Herrmann, C ; Hess, JM ; Hobolth, A ; Hodzic, E ; Hong, C ; Hornshoj, H ; Isaev, K ; Izarzugaza, JMG ; Johnson, TA ; Juul, M ; Juul, RI ; Kahles, A ; Kahraman, A ; Kellis, M ; Khurana, E ; Kim, J ; Kim, JK ; Kim, Y ; Komorowski, J ; Korbel, JO ; Kumar, S ; Lanzos, A ; Larsson, E ; Lawrence, MS ; Lee, D ; Lehmann, K-V ; Li, S ; Li, X ; Lin, Z ; Liu, EM ; Lochovsky, L ; Lou, S ; Madsen, T ; Marchal, K ; Martincorena, I ; Martinez-Fundichely, A ; Maruvka, YE ; McGillivray, PD ; Meyerson, W ; Muinos, F ; Mularoni, L ; Nakagawa, H ; Nielsen, MM ; Paczkowska, M ; Park, K ; Park, K ; Pedersen, JS ; Pich, O ; Pons, T ; Pulido-Tamayo, S ; Raphael, BJ ; Reimand, J ; Reyes-Salazar, I ; Reyna, MA ; Rheinbay, E ; Rubin, MA ; Rubio-Perez, C ; Sabarinathan, R ; Sahinalp, SC ; Saksena, G ; Salichos, L ; Sander, C ; Schumacher, SE ; Shackleton, M ; Shapira, O ; Shen, C ; Shrestha, R ; Shuai, S ; Sidiropoulos, N ; Sieverling, L ; Sinnott-Armstrong, N ; Stein, LD ; Stuart, JM ; Tamborero, D ; Tiao, G ; Tsunoda, T ; Umer, HM ; Uuskula-Reimand, L ; Valencia, A ; Vazquez, M ; Verbeke, LPC ; Wadelius, C ; Wadi, L ; Wang, J ; Warrell, J ; Waszak, SM ; Weischenfeldt, J ; Wheeler, DA ; Wu, G ; Yu, J ; Zhang, J ; Zhang, X ; Zhang, Y ; Zhao, Z ; Zou, L ; von Mering, C (NATURE PUBLISHING GROUP, 2020-02-05)
    Long non-coding RNAs (lncRNAs) are a growing focus of cancer genomics studies, creating the need for a resource of lncRNAs with validated cancer roles. Furthermore, it remains debated whether mutated lncRNAs can drive tumorigenesis, and whether such functions could be conserved during evolution. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, we introduce the Cancer LncRNA Census (CLC), a compilation of 122 GENCODE lncRNAs with causal roles in cancer phenotypes. In contrast to existing databases, CLC requires strong functional or genetic evidence. CLC genes are enriched amongst driver genes predicted from somatic mutations, and display characteristic genomic features. Strikingly, CLC genes are enriched for driver mutations from unbiased, genome-wide transposon-mutagenesis screens in mice. We identified 10 tumour-causing mutations in orthologues of 8 lncRNAs, including LINC-PINT and NEAT1, but not MALAT1. Thus CLC represents a dataset of high-confidence cancer lncRNAs. Mutagenesis maps are a novel means for identifying deeply-conserved roles of lncRNAs in tumorigenesis.
  • Item
    Thumbnail Image
    Integrative pathway enrichment analysis of multivariate omics data
    Paczkowska, M ; Barenboim, J ; Sintupisut, N ; Fox, NS ; Zhu, H ; Abd-Rabbo, D ; Mee, MW ; Boutros, PC ; Reimand, J (NATURE PUBLISHING GROUP, 2020-02-05)
    Multi-omics datasets represent distinct aspects of the central dogma of molecular biology. Such high-dimensional molecular profiles pose challenges to data interpretation and hypothesis generation. ActivePathways is an integrative method that discovers significantly enriched pathways across multiple datasets using statistical data fusion, rationalizes contributing evidence and highlights associated genes. As part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2658 cancers across 38 tumor types, we integrated genes with coding and non-coding mutations and revealed frequently mutated pathways and additional cancer genes with infrequent mutations. We also analyzed prognostic molecular pathways by integrating genomic and transcriptomic features of 1780 breast cancers and highlighted associations with immune response and anti-apoptotic signaling. Integration of ChIP-seq and RNA-seq data for master regulators of the Hippo pathway across normal human tissues identified processes of tissue regeneration and stem cell regulation. ActivePathways is a versatile method that improves systems-level understanding of cellular organization in health and disease through integration of multiple molecular datasets and pathway annotations.
  • Item
    Thumbnail Image
    Patterns of somatic structural variation in human cancer genomes
    Li, Y ; Roberts, ND ; Wala, JA ; Shapira, O ; Schumacher, SE ; Kumar, K ; Khurana, E ; Waszak, S ; Korbel, JO ; Haber, JE ; Imielinski, M ; Weischenfeldt, J ; Beroukhim, R ; Campbell, PJ ; Akdemir, KC ; Alvarez, EG ; Baez-Ortega, A ; Boutros, PC ; Bowtell, DDL ; Brors, B ; Burns, KH ; Chan, K ; Chen, K ; Cortes-Ciriano, I ; Dueso-Barroso, A ; Dunford, AJ ; Edwards, PA ; Estivill, X ; Etemadmoghadam, D ; Feuerbach, L ; Fink, JL ; Frenkel-Morgenstern, M ; Garsed, DW ; Gerstein, M ; Gordenin, DA ; Haan, D ; Hess, JM ; Hutter, B ; Jones, DTW ; Ju, YS ; Kazanov, MD ; Klimczak, LJ ; Koh, Y ; Lee, EA ; Lee, JJ-K ; Lynch, AG ; Macintyre, G ; Markowetz, F ; Martincorena, I ; Martinez-Fundichely, A ; Meyerson, M ; Miyano, S ; Nakagawa, H ; Navarro, FCP ; Ossowski, S ; Park, PJ ; Pearson, J ; Puiggros, M ; Rippe, K ; Roberts, SA ; Rodriguez-Martin, B ; Scully, R ; Shackleton, M ; Sidiropoulos, N ; Sieverling, L ; Stewart, C ; Torrents, D ; Tubio, JMC ; Villasante, I ; Waddell, N ; Yang, L ; Yao, X ; Yoon, S-S ; Zamora, J ; Zhang, C-Z (NATURE PORTFOLIO, 2020-02-06)
    A key mutational process in cancer is structural variation, in which rearrangements delete, amplify or reorder genomic segments that range in size from kilobases to whole chromosomes1-7. Here we develop methods to group, classify and describe somatic structural variants, using data from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), which aggregated whole-genome sequencing data from 2,658 cancers across 38 tumour types8. Sixteen signatures of structural variation emerged. Deletions have a multimodal size distribution, assort unevenly across tumour types and patients, are enriched in late-replicating regions and correlate with inversions. Tandem duplications also have a multimodal size distribution, but are enriched in early-replicating regions-as are unbalanced translocations. Replication-based mechanisms of rearrangement generate varied chromosomal structures with low-level copy-number gains and frequent inverted rearrangements. One prominent structure consists of 2-7 templates copied from distinct regions of the genome strung together within one locus. Such cycles of templated insertions correlate with tandem duplications, and-in liver cancer-frequently activate the telomerase gene TERT. A wide variety of rearrangement processes are active in cancer, which generate complex configurations of the genome upon which selection can act.