- Sir Peter MacCallum Department of Oncology - Research Publications
Sir Peter MacCallum Department of Oncology - Research Publications
Permanent URI for this collection
Search Results
Now showing
1 - 10 of 102
-
ItemImmune and genomic biomarkers of immunotherapy response in cancer of unknown primaryPosner, A ; Sivakumaran, T ; Pattison, A ; Etemadmoghadam, D ; Thio, N ; Wood, C ; Fisher, K ; Webb, S ; DeFazio, A ; Wilcken, N ; Gao, B ; Karapetis, CS ; Singh, M ; Collins, IM ; Richardson, G ; Steer, C ; Warren, M ; Karanth, N ; Fellowes, A ; Fox, SB ; Hicks, RJ ; Schofield, P ; Bowtell, D ; Prall, OWJ ; Tothill, RW ; Mileshkin, L (BMJ PUBLISHING GROUP, 2023-01-01)BACKGROUND: Cancer of unknown primary (CUP) is a heterogeneous group of metastatic cancers where a primary tissue of origin (TOO) is uncertain. Most patients with CUP have limited treatment options and poor survival outcomes. Immune checkpoint inhibitors (ICIs) can be efficacious in some patients with CUP, but the optimal predictive biomarkers are unknown. We therefore assessed immune and genomic biomarkers as well as predicted TOO in patients with CUP, including a subset treated with ICIs. METHODS: Patients with CUP were subject to gene-expression profiling (GEP) and DNA panel sequencing. Immune and stromal-related gene expression was explored by NanoString, including genes associated with immunotherapy response (IR) in other solid malignancies. ICI responsive cancer types were assigned based on Food and Drug Administration-approved indications, and either detection of a latent primary tumor or the TOO was suspected based on genomics informed pathology review. Tumor mutation burden (TMB) and gene mutations were also assessed. RESULTS: A total of 219 patients with CUP were included, 215 assessed for TOO in a previous study, with the majority (163) receiving both RNA and DNA tests. Of GEP profiled cases, 33% (59/175) had a high IR gene-expression score. Of the DNA sequenced cases, 16% (32/203) had high TMB (>10 mutations/Mb), including two with mismatch repair deficiency. Low correlation was observed between TMB and an IR score (R=0.26, p<0.001). Among 110 CUPs with a latent primary or suspected TOO, 47% (52/110) belonged to ICI-responsive cancer types. More than half of the CUPs had at least one feature that may predict ICI response (high IR score, high TMB, ICI-responsive cancer type). Among patients with CUP treated with ICIs, 8/28 (29%) responded (2 complete responses and 6 partial responses). Among non-responders, 9 had stable and 11 had progressive disease. All responders had a high IR score (7/8) and/or high TMB (3/8), while most (5/8) belonged to ICI-responsive cancer types. These features were detected at a lower frequency in non-responders and mostly in patients with stable disease. CONCLUSIONS: A significant fraction of CUP tumors had genomic features previously associated with ICI response. High IR score was the most sensitive predictive feature of ICI response, warranting evaluation in a larger patient series.
-
ItemModelling aggressive prostate cancers of young men in immune-competent mice, driven by isogenic Trp53 alterations and Pten lossMejia-Hernandez, JO ; Keam, SP ; Saleh, R ; Muntz, F ; Fox, SB ; Byrne, D ; Kogan, A ; Pang, L ; Huynh, J ; Litchfield, C ; Caramia, F ; Lozano, G ; He, H ; You, JM ; Sandhu, S ; Williams, SG ; Haupt, Y ; Haupt, S (SPRINGERNATURE, 2022-09-08)Understanding prostate cancer onset and progression in order to rationally treat this disease has been critically limited by a dire lack of relevant pre-clinical animal models. We have generated a set of genetically engineered mice that mimic human prostate cancer, initiated from the gland epithelia. We chose driver gene mutations that are specifically relevant to cancers of young men, where aggressive disease poses accentuated survival risks. An outstanding advantage of our models are their intact repertoires of immune cells. These mice provide invaluable insight into the importance of immune responses in prostate cancer and offer scope for studying treatments, including immunotherapies. Our prostate cancer models strongly support the role of tumour suppressor p53 in functioning to critically restrain the emergence of cancer pathways that drive cell cycle progression; alter metabolism and vasculature to fuel tumour growth; and mediate epithelial to mesenchymal-transition, as vital to invasion. Importantly, we also discovered that the type of p53 alteration dictates the specific immune cell profiles most significantly disrupted, in a temporal manner, with ramifications for disease progression. These new orthotopic mouse models demonstrate that each of the isogenic hotspot p53 amino acid mutations studied (R172H and R245W, the mouse equivalents of human R175H and R248W respectively), drive unique cellular changes affecting pathways of proliferation and immunity. Our findings support the hypothesis that individual p53 mutations confer their own particular oncogenic gain of function in prostate cancer.
-
ItemComparing Survival Outcomes for Advanced Cancer Patients Who Received Complex Genomic Profiling Using a Synthetic Control ArmO'Haire, S ; Degeling, K ; Franchini, F ; Tran, B ; Luen, SJ ; Gaff, C ; Smith, K ; Fox, S ; Desai, J ; IJzerman, M (SPRINGER, 2022-09-05)BACKGROUND: Complex genomic profiling (CGP) has transformed cancer treatment decision making, yet there is a lack of robust and quantifiable evidence for how utilisation of CGP improves patient outcomes. OBJECTIVE: This study evaluated cohort level clinical effectiveness of CGP to improve overall survival (OS) in real-world advanced cancer patients using a registry-based matched control population. PATIENTS AND METHODS: Two cohorts of advanced and refractory cancer patients were seen in consecutive series for early phase trial enrolment consideration. The first cohort (CGP group) accessed tumour profiling via a research study; while the second cohort that followed was not profiled. Overall survival between cohorts was compared using Kaplan-Meier curves and Cox proportional hazard models. Potential confounding was analysed and adjusted for using stabilised weights based on propensity scores. RESULTS: Within the CGP group, 25 (17.6%) patients received treatment informed by CGP results and this subgroup had significantly improved survival compared with CGP patients in whom results did not impact their treatment (unadjusted HR = 0.44, (0.22-0.88), p = 0.02). However, when comparing the entire CGP cohort with the No CGP cohort, no significant survival benefit was evident with adjusted median OS for CGP of 13.5 months (9.2-17.0) compared with 11.0 (9.2-17.4) for No CGP (adjusted HR = 0.92, (0.65-1.30), p = 0.63). CONCLUSIONS: This study utilised real-world data to simulate a control arm and quantify the clinical effectiveness of genomic testing. The magnitude of survival benefit for patients who had CGP result-led treatments was insufficient to drive an overall survival gain for the entire tested population. Translation of CGP into clinics requires strategies to ensure higher rates of tested patients obtain clinical benefit to deliver on the value proposition of CGP in an advanced cancer population.
-
ItemTargeting MDM4 as a Novel Therapeutic Approach in Prostate Cancer Independent of p53 StatusMejia-Hernandez, JO ; Raghu, D ; Caramia, F ; Clemons, N ; Fujihara, K ; Riseborough, T ; Teunisse, A ; Jochemsen, AG ; Abrahmsen, L ; Blandino, G ; Russo, A ; Gamell, C ; Fox, SB ; Mitchell, C ; Takano, EA ; Byrne, D ; Miranda, PJ ; Saleh, R ; Thorne, H ; Sandhu, S ; Williams, SG ; Keam, SP ; Haupt, Y ; Haupt, S (MDPI, 2022-08-01)Metastatic prostate cancer is a lethal disease in patients incapable of responding to therapeutic interventions. Invasive prostate cancer spread is caused by failure of the normal anti-cancer defense systems that are controlled by the tumour suppressor protein, p53. Upon mutation, p53 malfunctions. Therapeutic strategies to directly re-empower the growth-restrictive capacities of p53 in cancers have largely been unsuccessful, frequently because of a failure to discriminate responses in diseased and healthy tissues. Our studies sought alternative prostate cancer drivers, intending to uncover new treatment targets. We discovered the oncogenic potency of MDM4 in prostate cancer cells, both in the presence and absence of p53 and also its mutation. We uncovered that sustained depletion of MDM4 is growth inhibitory in prostate cancer cells, involving either apoptosis or senescence, depending on the cell and genetic context. We identified that the potency of MDM4 targeting could be potentiated in prostate cancers with mutant p53 through the addition of a first-in-class small molecule drug that was selected as a p53 reactivator and has the capacity to elevate oxidative stress in cancer cells to drive their death.
-
ItemClinical implications of prospective genomic profiling of metastatic breast cancer patients (vol 22, 91, 2020)van Geelen, CT ; Savas, P ; Teo, ZL ; Luen, SJ ; Weng, C-F ; Ko, Y-A ; Kuykhoven, KS ; Caramia, F ; Salgado, R ; Francis, PA ; Dawson, S-J ; Fox, SB ; Fellowes, A ; Loi, S (BMC, 2022-07-15)
-
ItemTumour mutational burden: an overview for pathologistsDoig, KD ; Fellowes, A ; Scott, P ; Fox, SB (ELSEVIER, 2022-03-29)Cancer immunotherapy holds great promise and has shown durable responses in many patients; however, these responses are not uniform in all patients or all tumour streams. There is an ongoing clinical need for objective diagnostic biomarkers to identify patients that will respond to immunotherapies. Tumour mutational burden (TMB) is a diagnostic biomarker that can stratify cancer patients for response to immune checkpoint inhibitor therapies. It is commonly defined as the average number of somatic mutations per megabase in a tumour exome. Here we describe the TMB biomarker, how it is determined, its underlying molecular basis, the relationship to neoantigens and the issues around its clinical use. This overview is directed toward practising pathologists wishing to be informed of this predictive biomarker.
-
ItemFindings from precision oncology in the clinic: rare, novel variants are a significant contributor to scaling molecular diagnosticsDoig, KD ; Love, CG ; Conway, T ; Seleznev, A ; Ma, D ; Fellowes, A ; Blombery, P ; Fox, SB (BMC, 2022-03-26)BACKGROUND: Next generation sequencing for oncology patient management is now routine in clinical pathology laboratories. Although wet lab, sequencing and pipeline tasks are largely automated, the analysis of variants for clinical reporting remains largely a manual task. The increasing volume of sequencing data and the limited availability of genetic experts to analyse and report on variants in the data is a key scalability limit for molecular diagnostics. METHOD: To determine the impact and size of the issue, we examined the longitudinally compiled genetic variants from 48,036 cancer patients over a six year period in a large cancer hospital from ten targeted cancer panel tests in germline, solid tumour and haematology contexts using hybridization capture and amplicon assays. This testing generated 24,168,398 sequenced variants of which 23,255 (8214 unique) were clinically reported. RESULTS: Of the reported variants, 17,240 (74.1%) were identified in more than one assay which allowed curated variant data to be reused in later reports. The remainder, 6015 (25.9%) were not subsequently seen in later assays and did not provide any reuse benefit. The number of new variants requiring curation has significantly increased over time from 1.72 to 3.73 variants per sample (292 curated variants per month). Analysis of the 23,255 variants reported, showed 28.6% (n = 2356) were not present in common public variant resources and therefore required de novo curation. These in-house only variants were enriched for indels, tumour suppressor genes and from solid tumour assays. CONCLUSION: This analysis highlights the significant percentage of variants not present within common public variant resources and the level of non-recurrent variants that consequently require greater curation effort. Many of these variants are unique to a single patient and unlikely to appear in other patients reflecting the personalised nature of cancer genomics. This study depicts the real-world situation for pathology laboratories faced with curating increasing numbers of low-recurrence variants while needing to expedite the process of manual variant curation. In the absence of suitably accurate automated methods, new approaches are needed to scale oncology diagnostics for future genetic testing volumes.
-
ItemCommon variants in breast cancer risk loci predispose to distinct tumor subtypesAhearn, TU ; Zhang, H ; Michailidou, K ; Milne, RL ; Bolla, MK ; Dennis, J ; Dunning, AM ; Lush, M ; Wang, Q ; Andrulis, IL ; Anton-Culver, H ; Arndt, V ; Aronson, KJ ; Auer, PL ; Augustinsson, A ; Baten, A ; Becher, H ; Behrens, S ; Benitez, J ; Bermisheva, M ; Blomqvist, C ; Bojesen, SE ; Bonanni, B ; Borresen-Dale, A-L ; Brauch, H ; Brenner, H ; Brooks-Wilson, A ; Bruening, T ; Burwinkel, B ; Buys, SS ; Canzian, F ; Castelao, JE ; Chang-Claude, J ; Chanock, SJ ; Chenevix-Trench, G ; Clarke, CL ; Collee, JM ; Cox, A ; Cross, SS ; Czene, K ; Daly, MB ; Devilee, P ; Dork, T ; Dwek, M ; Eccles, DM ; Evans, DG ; Fasching, PA ; Figueroa, J ; Floris, G ; Gago-Dominguez, M ; Gapstur, SM ; Garcia-Saenz, JA ; Gaudet, MM ; Giles, GG ; Goldberg, MS ; Gonzalez-Neira, A ; Alnaes, GIG ; Grip, M ; Guenel, P ; Haiman, CA ; Hall, P ; Hamann, U ; Harkness, EF ; Heemskerk-Gerritsen, BAM ; Holleczek, B ; Hollestelle, A ; Hooning, MJ ; Hoover, RN ; Hopper, JL ; Howell, A ; Jakimovska, M ; Jakubowska, A ; John, EM ; Jones, ME ; Jung, A ; Kaaks, R ; Kauppila, S ; Keeman, R ; Khusnutdinova, E ; Kitahara, CM ; Ko, Y-D ; Koutros, S ; Kristensen, VN ; Kruger, U ; Kubelka-Sabit, K ; Kurian, AW ; Kyriacou, K ; Lambrechts, D ; Lee, DG ; Lindblom, A ; Linet, M ; Lissowska, J ; Llaneza, A ; Lo, W-Y ; MacInnis, RJ ; Mannermaa, A ; Manoochehri, M ; Margolin, S ; Martinez, ME ; McLean, C ; Meindl, A ; Menon, U ; Nevanlinna, H ; Newman, WG ; Nodora, J ; Offit, K ; Olsson, H ; Orr, N ; Park-Simon, T-W ; Patel, A ; Peto, J ; Pita, G ; Plaseska-Karanfilska, D ; Prentice, R ; Punie, K ; Pylkas, K ; Radice, P ; Rennert, G ; Romero, A ; Ruediger, T ; Saloustros, E ; Sampson, S ; Sandler, DP ; Sawyer, EJ ; Schmutzler, RK ; Schoemaker, MJ ; Schottker, B ; Sherman, ME ; Shu, X-O ; Smichkoska, S ; Southey, MC ; Spinelli, JJ ; Swerdlow, AJ ; Tamimi, RM ; Tapper, WJ ; Taylor, JA ; Teras, LR ; Terry, MB ; Torres, D ; Troester, MA ; Vachon, CM ; van Deurzen, CHM ; van Veen, EM ; Wagner, P ; Weinberg, CR ; Wendt, C ; Wesseling, J ; Winqvist, R ; Wolk, A ; Yang, XR ; Zheng, W ; Couch, FJ ; Simard, J ; Kraft, P ; Easton, DF ; Pharoah, PDP ; Schmidt, MK ; Garcia-Closas, M ; Chatterjee, N (BMC, 2022-01-04)BACKGROUND: Genome-wide association studies (GWAS) have identified multiple common breast cancer susceptibility variants. Many of these variants have differential associations by estrogen receptor (ER) status, but how these variants relate with other tumor features and intrinsic molecular subtypes is unclear. METHODS: Among 106,571 invasive breast cancer cases and 95,762 controls of European ancestry with data on 173 breast cancer variants identified in previous GWAS, we used novel two-stage polytomous logistic regression models to evaluate variants in relation to multiple tumor features (ER, progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) and grade) adjusting for each other, and to intrinsic-like subtypes. RESULTS: Eighty-five of 173 variants were associated with at least one tumor feature (false discovery rate < 5%), most commonly ER and grade, followed by PR and HER2. Models for intrinsic-like subtypes found nearly all of these variants (83 of 85) associated at p < 0.05 with risk for at least one luminal-like subtype, and approximately half (41 of 85) of the variants were associated with risk of at least one non-luminal subtype, including 32 variants associated with triple-negative (TN) disease. Ten variants were associated with risk of all subtypes in different magnitude. Five variants were associated with risk of luminal A-like and TN subtypes in opposite directions. CONCLUSION: This report demonstrates a high level of complexity in the etiology heterogeneity of breast cancer susceptibility variants and can inform investigations of subtype-specific risk prediction.
-
ItemIn vitro and in vivo drug screens of tumor cells identify novel therapies for high-risk child cancerLau, LMS ; Mayoh, C ; Xie, J ; Barahona, P ; MacKenzie, KL ; Wong, M ; Kamili, A ; Tsoli, M ; Failes, TW ; Kumar, A ; Mould, EVA ; Gifford, A ; Chow, S-O ; Pinese, M ; Fletcher, J ; Arndt, GM ; Khuong-Quang, D-A ; Wadham, C ; Eden, G ; Trebilcock, P ; Joshi, S ; Alfred, S ; Gopalakrishnan, A ; Khan, A ; Wade, DG ; Strong, PA ; Manouvrier, E ; Morgan, LT ; Cadiz, R ; Ung, C ; Thomas, DM ; Tucker, KM ; Warby, M ; McCowage, GB ; Dalla-Pozza, L ; Byrne, JA ; Saletta, F ; Fellowes, A ; Fox, SB ; Norris, MD ; Tyrrell, V ; Trahair, TN ; Lock, RB ; Cowley, MJ ; Ekert, PG ; Haber, M ; Ziegler, DS ; Marshall, GM (WILEY, 2021-12-20)Biomarkers which better match anticancer drugs with cancer driver genes hold the promise of improved clinical responses and cure rates. We developed a precision medicine platform of rapid high-throughput drug screening (HTS) and patient-derived xenografting (PDX) of primary tumor tissue, and evaluated its potential for treatment identification among 56 consecutively enrolled high-risk pediatric cancer patients, compared with conventional molecular genomics and transcriptomics. Drug hits were seen in the majority of HTS and PDX screens, which identified therapeutic options for 10 patients for whom no targetable molecular lesions could be found. Screens also provided orthogonal proof of drug efficacy suggested by molecular analyses and negative results for some molecular findings. We identified treatment options across the whole testing platform for 70% of patients. Only molecular therapeutic recommendations were provided to treating oncologists and led to a change in therapy in 53% of patients, of whom 29% had clinical benefit. These data indicate that in vitro and in vivo drug screening of tumor cells could increase therapeutic options and improve clinical outcomes for high-risk pediatric cancer patients.
-
ItemBRAF Signaling Inhibition in Glioblastoma: Which Clinical Perspectives?Bouche, V ; Aldegheri, G ; Donofrio, CA ; Fioravanti, A ; Roberts-Thomson, S ; Fox, SB ; Schettini, F ; Generali, D (FRONTIERS MEDIA SA, 2021-11-03)IDH-wild type (wt) glioblastoma (GB) accounts for approximately 90% of all GB and has a poor outcome. Surgery and adjuvant therapy with temozolomide and radiotherapy is the main therapeutic approach. Unfortunately, after relapse and progression, which occurs in most cases, there are very limited therapeutic options available. BRAF which plays a role in the oncogenesis of several malignant tumors, is also involved in a small proportion of IDH-wt GB. Previous successes with anti-B-Raf targeted therapy in tumors with V600E BRAF mutation like melanoma, combined with the poor prognosis and paucity of therapeutic options for GB patients is leading to a growing interest in the potential efficacy of this approach. This review is thus focused on dissecting the state of the art and future perspectives on BRAF pathway inhibition in IDH-wt GB. Overall, clinical efficacy is mostly described within case reports and umbrella trials, with promising but still insufficient results to draw more definitive conclusions. Further studies are needed to better define the molecular and phenotypic features that predict for a favorable response to treatment. In addition, limitations of B-Raf-inhibitors, in monotherapy or in combination with other therapeutic partners, to penetrate the blood-brain barrier and the development of acquired resistance mechanisms responsible for tumor progression need to be addressed.