Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 12
  • Item
    Thumbnail Image
    Adaptive translational reprogramming of metabolism limits the response to targeted therapy in BRAFV600 melanoma
    Smith, LK ; Parmenter, T ; Kleinschmidt, M ; Kusnadi, EP ; Kang, J ; Martin, CA ; Lau, P ; Patel, R ; Lorent, J ; Papadopoli, D ; Trigos, A ; Ward, T ; Rao, AD ; Lelliott, EJ ; Sheppard, KE ; Goode, D ; Hicks, RJ ; Tiganis, T ; Simpson, KJ ; Larsson, O ; Blythe, B ; Cullinane, C ; Wickramasinghe, VO ; Pearson, RB ; McArthur, GA (NATURE PORTFOLIO, 2022-03-01)
    Despite the success of therapies targeting oncogenes in cancer, clinical outcomes are limited by residual disease that ultimately results in relapse. This residual disease is often characterized by non-genetic adaptive resistance, that in melanoma is characterised by altered metabolism. Here, we examine how targeted therapy reprograms metabolism in BRAF-mutant melanoma cells using a genome-wide RNA interference (RNAi) screen and global gene expression profiling. Using this systematic approach we demonstrate post-transcriptional regulation of metabolism following BRAF inhibition, involving selective mRNA transport and translation. As proof of concept we demonstrate the RNA processing kinase U2AF homology motif kinase 1 (UHMK1) associates with mRNAs encoding metabolism proteins and selectively controls their transport and translation during adaptation to BRAF-targeted therapy. UHMK1 inactivation induces cell death by disrupting therapy induced metabolic reprogramming, and importantly, delays resistance to BRAF and MEK combination therapy in multiple in vivo models. We propose selective mRNA processing and translation by UHMK1 constitutes a mechanism of non-genetic resistance to targeted therapy in melanoma by controlling metabolic plasticity induced by therapy.
  • Item
    Thumbnail Image
    Palbociclib synergizes with BRAF and MEK inhibitors in treatment naive melanoma but not after the development of BRAF inhibitor resistance
    Martin, CA ; Cullinane, C ; Kirby, L ; Abuhammad, S ; Lelliott, EJ ; Waldeck, K ; Young, RJ ; Brajanovski, N ; Cameron, DP ; Walker, R ; Sanij, E ; Poortinga, G ; Hannan, RD ; Pearson, RB ; Hicks, RJ ; McArthur, GA ; Sheppard, KE (WILEY, 2018-05-15)
    Increased CDK4 activity occurs in the majority of melanomas and CDK4/6 inhibitors in combination with BRAF and MEK inhibitors are currently in clinical trials for the treatment of melanoma. We hypothesize that the timing of the addition of CDK4/6 inhibitors to the current BRAF and MEK inhibitor regime will impact on the efficacy of this triplet drug combination. The efficacy of BRAF, MEK and CDK4/6 inhibitors as single agents and in combination was assessed in human BRAF mutant cell lines that were treatment naïve, BRAF inhibitor tolerant or had acquired resistance to BRAF inhibitors. Xenograft studies were then performed to test the in vivo efficacy of the BRAF and CDK4/6 inhibitor combination. Melanoma cells that had developed early reversible tolerance or acquired resistance to BRAF inhibition remained sensitive to palbociclib. In drug-tolerant cells, the efficacy of the combination of palbociclib with BRAF and/or MEK inhibitors was equivalent to single agent palbociclib. Similarly, acquired BRAF inhibitor resistance cells lost efficacy to the palbociclib and BRAF combination. In contrast, upfront treatment of melanoma cells with palbociclib in combination with BRAF and/or MEK inhibitors induced either cell death or senescence and was superior to a BRAF plus MEK inhibitor combination. In vivo palbociclib plus BRAF inhibitor induced rapid and sustained tumor regression without the development of therapy resistance. In summary, upfront dual targeting of CDK4/6 and mutant BRAF signaling enables tumor cells to evade resistance to monotherapy and is required for robust and sustained tumor regression. Melanoma patients whose tumors have acquired resistance to BRAF inhibition are less likely to have favorable responses to subsequent treatment with the triplet combination of BRAF, MEK and CDK4/6 inhibitors.
  • Item
    No Preview Available
    Inhibition of RNA polymerase I transcription activates targeted DNA damage response and enhances the efficacy of PARP inhibitors in high-grade serous ovarian cancer.
    Sanij, E ; Hannan, K ; Xuan, J ; Yan, S ; Ahern, JA ; Trigos, AS ; Brajanovski, N ; Son, J ; Chan, KT ; Kondrashova, O ; Lieschke, E ; Wakefield, MJ ; Ellis, S ; Cullinane, C ; Poortinga, G ; Khanna, KK ; Mileshkin, L ; McArthur, GA ; Soong, J ; Berns, EM ; Hannan, RD ; Scott, CL ; Sheppard, KE ; Pearson, RB (AMER ASSOC CANCER RESEARCH, 2020-07)
    Abstract Introduction: PARP inhibitors (PARPi) have revolutionized disease management of patients with homologous recombination (HR) DNA repair-deficient high-grade serous ovarian cancer (HGSOC). However, acquired resistance to PARPi is a major challenge in the clinic. The specific inhibitor of RNA polymerase I (Pol I) transcription of ribosomal RNA genes (rDNA) has demonstrated single-agent antitumor activity in p53 wild-type and p53-mutant hematologic malignancies (first-in-human trial, dose escalation study of CX-5461 at Peter MacCallum Cancer Centre) (Khot et al., Cancer Discov 2019). CX-5461 has also been reported to exhibit synthetic lethality with BRCA1/2 deficiency through stabilization of G-quadruplex DNA (GQ) structures. Here, we investigate the efficacy of CX-5461 in treating HGSOC. Experimental Design: The mechanisms by which CX-5461 induces DNA damage response (DDR) and displays synthetic lethality in HR-deficient HGSOC cells are explored. We present in vivo data of mice bearing two functionally and genomically profiled HGSOC-patient-derived xenograft (PDX)s treated with CX-5461 and olaparib, alone and in combination. We also investigate CX-5461-sensitivity gene expression signatures in primary and relapsed HGSOC. Results: Utilizing ovarian cancer cell lines, we demonstrate that sensitivity to CX-5461 is associated with “BRCA1 mutation” and “MYC targets” gene expression signatures. In addition, sensitivity to CX-5461 is associated with high basal rates of Pol I transcription. Importantly, we demonstrate a novel mechanism for CX-5461 synthetic lethal interaction with HR deficiency mediated through the induction of replication stress at rDNA repeats. Our data reveal CX-5461-mediated DDR in HR-deficient cells does not involve stabilization of GQ structures as previously proposed. On the contrary, we show definitively that CX-5461 inhibits Pol I recruitment leading to rDNA chromatin defects including stabilization of R-loops, single-stranded DNA, and replication stress at the rDNA. Mechanistically, we demonstrate CX-5461 leads to replication-dependent DNA damage involving MRE11-dependent degradation of replication forks. Importantly, CX-5461 has a different sensitivity spectrum to olaparib and cooperates with PARPi in exacerbating replication stress, leading to enhanced therapeutic efficacy in HR-deficient HGSOC-PDX in vivo compared to single-agent treatment of both drugs. Further, CX-5461 exhibits single-agent efficacy in olaparib-resistant HGSOC-PDX overcoming PARPi-resistance mechanisms involving fork protection. Importantly, we identify CX-5461-sensitivity gene expression signatures in primary and relapsed HGSOC. Conclusions: CX-5461 is a promising therapy alone and in combination therapy with PARPi in HR-deficient HGSOC. CX-5461 also has exciting potential as a treatment option for patients with relapsed HGSOC tumors that have high MYC activity and poor clinical outcome; these patients currently have very limited effective treatment options. This abstract is also being presented as Poster A71. Citation Format: Elaine Sanij, Katherine Hannan, Jiachen Xuan, Shunfei Yan, Jessica A. Ahern, Anna S. Trigos, Natalie Brajanovski, Jinbae Son, Keefe T. Chan, Olga Kondrashova, Elizabeth Lieschke, Matthew J. Wakefield, Sarah Ellis, Carleen Cullinane, Gretchen Poortinga, Kum Kum Khanna, Linda Mileshkin, Grant A. McArthur, John Soong, Els M. Berns, Ross D. Hannan, Clare L. Scott, Karen E. Sheppard, Richard B. Pearson. Inhibition of RNA polymerase I transcription activates targeted DNA damage response and enhances the efficacy of PARP inhibitors in high-grade serous ovarian cancer [abstract]. In: Proceedings of the AACR Special Conference on Advances in Ovarian Cancer Research; 2019 Sep 13-16, 2019; Atlanta, GA. Philadelphia (PA): AACR; Clin Cancer Res 2020;26(13_Suppl):Abstract nr PR13.
  • Item
    Thumbnail Image
    Reprogrammed mRNA translation drives resistance to therapeutic targeting of ribosome biogenesis
    Kusnadi, EP ; Trigos, AS ; Cullinane, C ; Goode, DL ; Larsson, O ; Devlin, JR ; Chan, KT ; De Souza, DP ; McConville, MJ ; McArthur, GA ; Thomas, G ; Sanij, E ; Poortinga, G ; Hannan, RD ; Hannan, KM ; Kang, J ; Pearson, RB (WILEY, 2020-11-02)
    Elevated ribosome biogenesis in oncogene-driven cancers is commonly targeted by DNA-damaging cytotoxic drugs. Our previous first-in-human trial of CX-5461, a novel, less genotoxic agent that specifically inhibits ribosome biogenesis via suppression of RNA polymerase I (Pol I) transcription, revealed single-agent efficacy in refractory blood cancers. Despite this clinical response, patients were not cured. In parallel, we demonstrated a marked improvement in the in vivo efficacy of CX-5461 in combination with PI3K/AKT/mTORC1 pathway inhibitors. Here, we reveal the molecular basis for this improved efficacy observed in vivo, which is associated with specific suppression of translation of mRNAs encoding regulators of cellular metabolism. Importantly, acquired resistance to this cotreatment is driven by translational rewiring that results in dysregulated cellular metabolism and induction of a cAMP-dependent pathway critical for the survival of blood cancers including lymphoma and acute myeloid leukemia. Our studies thus identify key molecular mechanisms underpinning the response of blood cancers to selective inhibition of ribosome biogenesis and define metabolic vulnerabilities that will facilitate the rational design of more effective regimens for Pol I-directed therapies.
  • Item
    Thumbnail Image
    Changes in long-range rDNA-genomic interactions associate with altered RNA polymerase II gene programs during malignant transformation
    Diesch, J ; Bywater, MJ ; Sanij, E ; Cameron, DP ; Schierding, W ; Brajanovski, N ; Son, J ; Sornkom, J ; Hein, N ; Evers, M ; Pearson, RB ; McArthur, GA ; Ganley, ARD ; O'Sullivan, JM ; Hannan, RD ; Poortinga, G (NATURE PORTFOLIO, 2019-01-28)
    The three-dimensional organization of the genome contributes to its maintenance and regulation. While chromosomal regions associate with nucleolar ribosomal RNA genes (rDNA), the biological significance of rDNA-genome interactions and whether they are dynamically regulated during disease remain unclear. rDNA chromatin exists in multiple inactive and active states and their transition is regulated by the RNA polymerase I transcription factor UBTF. Here, using a MYC-driven lymphoma model, we demonstrate that during malignant progression the rDNA chromatin converts to the open state, which is required for tumor cell survival. Moreover, this rDNA transition co-occurs with a reorganization of rDNA-genome contacts which correlate with gene expression changes at associated loci, impacting gene ontologies including B-cell differentiation, cell growth and metabolism. We propose that UBTF-mediated conversion to open rDNA chromatin during malignant transformation contributes to the regulation of specific gene pathways that regulate growth and differentiation through reformed long-range physical interactions with the rDNA.
  • Item
    Thumbnail Image
    CX-5461 activates the DNA damage response and demonstrates therapeutic efficacy in high-grade serous ovarian cancer
    Sanij, E ; Hannan, KM ; Xuan, J ; Yan, S ; Ahern, JE ; Trigos, AS ; Brajanovski, N ; Son, J ; Chan, KT ; Kondrashova, O ; Lieschke, E ; Wakefield, MJ ; Frank, D ; Ellis, S ; Cullinane, C ; Kang, J ; Poortinga, G ; Nag, P ; Deans, AJ ; Khanna, KK ; Mileshkin, L ; McArthur, GA ; Soong, J ; Berns, EMJJ ; Hannan, RD ; Scott, CL ; Sheppard, KE ; Pearson, RB (NATURE PUBLISHING GROUP, 2020-05-26)
    Acquired resistance to PARP inhibitors (PARPi) is a major challenge for the clinical management of high grade serous ovarian cancer (HGSOC). Here, we demonstrate CX-5461, the first-in-class inhibitor of RNA polymerase I transcription of ribosomal RNA genes (rDNA), induces replication stress and activates the DNA damage response. CX-5461 co-operates with PARPi in exacerbating replication stress and enhances therapeutic efficacy against homologous recombination (HR) DNA repair-deficient HGSOC-patient-derived xenograft (PDX) in vivo. We demonstrate CX-5461 has a different sensitivity spectrum to PARPi involving MRE11-dependent degradation of replication forks. Importantly, CX-5461 exhibits in vivo single agent efficacy in a HGSOC-PDX with reduced sensitivity to PARPi by overcoming replication fork protection. Further, we identify CX-5461-sensitivity gene expression signatures in primary and relapsed HGSOC. We propose CX-5461 is a promising therapy in combination with PARPi in HR-deficient HGSOC and also as a single agent for the treatment of relapsed disease.
  • Item
    Thumbnail Image
    Regulation of PRMT5-MDM4 axis is critical in the response to CDK4/6 inhibitors in melanoma
    AbuHammad, S ; Cullinane, C ; Martin, C ; Bacolas, Z ; Ward, T ; Chen, H ; Slater, A ; Ardley, K ; Kirby, L ; Chan, KT ; Brajanovski, N ; Smith, LK ; Rao, AD ; Lelliott, EJ ; Kleinschmidt, M ; Vergara, IA ; Papenfuss, AT ; Lau, P ; Ghosh, P ; Haupt, S ; Haupt, Y ; Sanij, E ; Poortinga, G ; Pearson, RB ; Falk, H ; Curtis, DJ ; Stupple, P ; Devlin, M ; Street, I ; Davies, MA ; McArthur, GA ; Sheppard, KE (NATL ACAD SCIENCES, 2019-09-03)
    Cyclin-dependent kinase 4/6 (CDK4/6) inhibitors are an established treatment in estrogen receptor-positive breast cancer and are currently in clinical development in melanoma, a tumor that exhibits high rates of CDK4 activation. We analyzed melanoma cells with acquired resistance to the CDK4/6 inhibitor palbociclib and demonstrate that the activity of PRMT5, a protein arginine methyltransferase and indirect target of CDK4, is essential for CDK4/6 inhibitor sensitivity. By indirectly suppressing PRMT5 activity, palbociclib alters the pre-mRNA splicing of MDM4, a negative regulator of p53, leading to decreased MDM4 protein expression and subsequent p53 activation. In turn, p53 induces p21, leading to inhibition of CDK2, the main kinase substituting for CDK4/6 and a key driver of resistance to palbociclib. Loss of the ability of palbociclib to regulate the PRMT5-MDM4 axis leads to resistance. Importantly, combining palbociclib with the PRMT5 inhibitor GSK3326595 enhances the efficacy of palbociclib in treating naive and resistant models and also delays the emergence of resistance. Our studies have uncovered a mechanism of action of CDK4/6 inhibitors in regulating the MDM4 oncogene and the tumor suppressor, p53. Furthermore, we have established that palbociclib inhibition of the PRMT5-MDM4 axis is essential for robust melanoma cell sensitivity and provide preclinical evidence that coinhibition of CDK4/6 and PRMT5 is an effective and well-tolerated therapeutic strategy. Overall, our data provide a strong rationale for further investigation of novel combinations of CDK4/6 and PRMT5 inhibitors, not only in melanoma but other tumor types, including breast, pancreatic, and esophageal carcinoma.
  • Item
    Thumbnail Image
    Inhibition of RNA polymerase I transcription initiation by CX-5461 activates non-canonical ATM/ATR signaling
    Quin, J ; Chan, KT ; Devlin, JR ; Cameron, DP ; Diesch, J ; Cullinane, C ; Ahern, J ; Khot, A ; Hein, N ; George, AJ ; Hannan, KM ; Poortinga, G ; Sheppard, KE ; Khanna, KK ; Johnstone, RW ; Drygin, D ; McArthur, GA ; Pearson, RB ; Sanij, E ; Hannan, RD (IMPACT JOURNALS LLC, 2016-08-02)
    RNA polymerase I (Pol I)-mediated transcription of the ribosomal RNA genes (rDNA) is confined to the nucleolus and is a rate-limiting step for cell growth and proliferation. Inhibition of Pol I by CX-5461 can selectively induce p53-mediated apoptosis of tumour cells in vivo. Currently, CX-5461 is in clinical trial for patients with advanced haematological malignancies (Peter Mac, Melbourne). Here we demonstrate that CX-5461 also induces p53-independent cell cycle checkpoints mediated by ATM/ATR signaling in the absence of DNA damage. Further, our data demonstrate that the combination of drugs targeting ATM/ATR signaling and CX-5461 leads to enhanced therapeutic benefit in treating p53-null tumours in vivo, which are normally refractory to each drug alone. Mechanistically, we show that CX-5461 induces an unusual chromatin structure in which transcriptionally competent relaxed rDNA repeats are devoid of transcribing Pol I leading to activation of ATM signaling within the nucleoli. Thus, we propose that acute inhibition of Pol transcription initiation by CX-5461 induces a novel nucleolar stress response that can be targeted to improve therapeutic efficacy.
  • Item
    Thumbnail Image
    AKT signalling is required for ribosomal RNA synthesis and progression of Eμ-Myc B-cell lymphoma in vivo
    Devlin, JR ; Hannan, KM ; Ng, PY ; Bywater, MJ ; Shortt, J ; Cullinane, C ; McArthur, GA ; Johnstone, RW ; Hannan, RD ; Pearson, RB (WILEY-BLACKWELL, 2013-11)
    The dysregulation of PI3K/AKT/mTORC1 signalling and/or hyperactivation of MYC are observed in a high proportion of human cancers, and together they form a 'super signalling' network mediating malignancy. A fundamental downstream action of this signalling network is up-regulation of ribosome biogenesis and subsequent alterations in the patterns of translation and increased protein synthesis, which are thought to be critical for AKT/MYC-driven oncogenesis. We have demonstrated that AKT and MYC cooperate to drive ribosomal DNA (rDNA) transcription and ribosome biogenesis, with AKT being essential for rDNA transcription and in vitro survival of lymphoma cells isolated from a MYC-driven model of B-cell lymphoma (Eμ-Myc) [Chan JC et al., (2011) Science Signalling 4, ra56]. Here we show that the allosteric AKT inhibitor MK-2206 rapidly and potently antagonizes rDNA transcription in Eμ-Myc B-cell lymphomas in vivo, and this is associated with a rapid reduction in indicators of disease burden, including spleen weight and the abundance of tumour cells in both the circulation and lymph nodes. Extended treatment of tumour-bearing mice with MK-2206 resulted in a significant delay in disease progression, associated with increased B-cell lymphoma apoptosis. Our findings suggest that malignant diseases characterized by unrestrained ribosome biogenesis may be vulnerable to therapeutic strategies that target the PI3K/AKT/mTORC1/MYC growth control network.
  • Item
    Thumbnail Image
    Loss of CDKN2A expression is a frequent event in primary invasive melanoma and correlates with sensitivity to the CDK4/6 inhibitor PD0332991 in melanoma cell lines
    Young, RJ ; Waldeck, K ; Martin, C ; Foo, JH ; Cameron, DP ; Kirby, L ; Do, H ; Mitchell, C ; Cullinane, C ; Liu, W ; Fox, SB ; Dutton-Regester, K ; Hayward, NK ; Jene, N ; Dobrovic, A ; Pearson, RB ; Christensen, JG ; Randolph, S ; McArthur, GA ; Sheppard, KE (WILEY-BLACKWELL, 2014-07)
    We have investigated the potential for the p16-cyclin D-CDK4/6-retinoblastoma protein pathway to be exploited as a therapeutic target in melanoma. In a cohort of 143 patients with primary invasive melanoma, we used fluorescence in situ hybridization to detect gene copy number variations (CNVs) in CDK4, CCND1, and CDKN2A and immunohistochemistry to determine protein expression. CNVs were common in melanoma, with gain of CDK4 or CCND1 in 37 and 18% of cases, respectively, and hemizygous or homozygous loss of CDKN2A in 56%. Three-quarters of all patients demonstrated a CNV in at least one of the three genes. The combination of CCND1 gain with either a gain of CDK4 and/or loss of CDKN2A was associated with poorer melanoma-specific survival. In 47 melanoma cell lines homozygous loss, methylation or mutation of CDKN2A gene or loss of protein (p16(INK) (4A) ) predicted sensitivity to the CDK4/6 inhibitor PD0332991, while RB1 loss predicted resistance.