Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 8 of 8
  • Item
    No Preview Available
    AKT-independent PI3-K signaling in cancer - emerging role for SGK3.
    Bruhn, MA ; Pearson, RB ; Hannan, RD ; Sheppard, KE (Informa UK Limited, 2013)
    The phosphoinositide 3-kinase (PI3-K) signaling pathway plays an important role in a wide variety of fundamental cellular processes, largely mediated via protein kinase B/v-akt murine thymoma viral oncogene homolog (PKB/AKT) signaling. Given the crucial role of PI3-K/AKT signaling in regulating processes such as cell growth, proliferation, and survival, it is not surprising that components of this pathway are frequently dysregulated in cancer, making the AKT kinase family members important therapeutic targets. The large number of clinical trials currently evaluating PI3-K pathway inhibitors as a therapeutic strategy further emphasizes this. The serum- and glucocorticoid-inducible protein kinase (SGK) family is made up of three isoforms, SGK1, 2, and 3, that are PI3-K-dependent, serine/threonine kinases, with similar substrate specificity to AKT. Consequently, the SGK family also regulates similar cell processes to the AKT kinases, including cell proliferation and survival. Importantly, there is emerging evidence demonstrating that SGK3 plays a critical role in AKT-independent oncogenic signaling. This review will focus on the role of SGK3 as a key effector of AKT-independent PI3-K oncogenic signaling.
  • Item
    Thumbnail Image
    Expression, Regulation and Putative Nutrient-Sensing Function of Taste GPCRs in the Heart
    Foster, SR ; Porrello, ER ; Purdue, B ; Chan, H-W ; Voigt, A ; Frenzel, S ; Hannan, RD ; Moritz, KM ; Simmons, DG ; Molenaar, P ; Roura, E ; Boehm, U ; Meyerhof, W ; Thomas, WG ; Ishimaru, Y (PUBLIC LIBRARY SCIENCE, 2013-05-15)
    G protein-coupled receptors (GPCRs) are critical for cardiovascular physiology. Cardiac cells express >100 nonchemosensory GPCRs, indicating that important physiological and potential therapeutic targets remain to be discovered. Moreover, there is a growing appreciation that members of the large, distinct taste and odorant GPCR families have specific functions in tissues beyond the oronasal cavity, including in the brain, gastrointestinal tract and respiratory system. To date, these chemosensory GPCRs have not been systematically studied in the heart. We performed RT-qPCR taste receptor screens in rodent and human heart tissues that revealed discrete subsets of type 2 taste receptors (TAS2/Tas2) as well as Tas1r1 and Tas1r3 (comprising the umami receptor) are expressed. These taste GPCRs are present in cultured cardiac myocytes and fibroblasts, and by in situ hybridization can be visualized across the myocardium in isolated cardiac cells. Tas1r1 gene-targeted mice (Tas1r1(Cre)/Rosa26(tdRFP)) strikingly recapitulated these data. In vivo taste receptor expression levels were developmentally regulated in the postnatal period. Intriguingly, several Tas2rs were upregulated in cultured rat myocytes and in mouse heart in vivo following starvation. The discovery of taste GPCRs in the heart opens an exciting new field of cardiac research. We predict that these taste receptors may function as nutrient sensors in the heart.
  • Item
    Thumbnail Image
    Autophagy Induction Is a Tor- and Tp53-Independent Cell Survival Response in a Zebrafish Model of Disrupted Ribosome Biogenesis
    Boglev, Y ; Badrock, AP ; Trotter, AJ ; Du, Q ; Richardson, EJ ; Parslow, AC ; Markmiller, SJ ; Hall, NE ; de Jong-Curtain, TA ; Ng, AY ; Verkade, H ; Ober, EA ; Field, HA ; Shin, D ; Shin, CH ; Hannan, KM ; Hannan, RD ; Pearson, RB ; Kim, S-H ; Ess, KC ; Lieschke, GJ ; Stainier, DYR ; Heath, JK ; Trainor, PA (PUBLIC LIBRARY SCIENCE, 2013-02)
    Ribosome biogenesis underpins cell growth and division. Disruptions in ribosome biogenesis and translation initiation are deleterious to development and underlie a spectrum of diseases known collectively as ribosomopathies. Here, we describe a novel zebrafish mutant, titania (tti(s450)), which harbours a recessive lethal mutation in pwp2h, a gene encoding a protein component of the small subunit processome. The biochemical impacts of this lesion are decreased production of mature 18S rRNA molecules, activation of Tp53, and impaired ribosome biogenesis. In tti(s450), the growth of the endodermal organs, eyes, brain, and craniofacial structures is severely arrested and autophagy is up-regulated, allowing intestinal epithelial cells to evade cell death. Inhibiting autophagy in tti(s450) larvae markedly reduces their lifespan. Somewhat surprisingly, autophagy induction in tti(s450) larvae is independent of the state of the Tor pathway and proceeds unabated in Tp53-mutant larvae. These data demonstrate that autophagy is a survival mechanism invoked in response to ribosomal stress. This response may be of relevance to therapeutic strategies aimed at killing cancer cells by targeting ribosome biogenesis. In certain contexts, these treatments may promote autophagy and contribute to cancer cells evading cell death.
  • Item
    Thumbnail Image
    AKT signalling is required for ribosomal RNA synthesis and progression of Eμ-Myc B-cell lymphoma in vivo
    Devlin, JR ; Hannan, KM ; Ng, PY ; Bywater, MJ ; Shortt, J ; Cullinane, C ; McArthur, GA ; Johnstone, RW ; Hannan, RD ; Pearson, RB (WILEY-BLACKWELL, 2013-11)
    The dysregulation of PI3K/AKT/mTORC1 signalling and/or hyperactivation of MYC are observed in a high proportion of human cancers, and together they form a 'super signalling' network mediating malignancy. A fundamental downstream action of this signalling network is up-regulation of ribosome biogenesis and subsequent alterations in the patterns of translation and increased protein synthesis, which are thought to be critical for AKT/MYC-driven oncogenesis. We have demonstrated that AKT and MYC cooperate to drive ribosomal DNA (rDNA) transcription and ribosome biogenesis, with AKT being essential for rDNA transcription and in vitro survival of lymphoma cells isolated from a MYC-driven model of B-cell lymphoma (Eμ-Myc) [Chan JC et al., (2011) Science Signalling 4, ra56]. Here we show that the allosteric AKT inhibitor MK-2206 rapidly and potently antagonizes rDNA transcription in Eμ-Myc B-cell lymphomas in vivo, and this is associated with a rapid reduction in indicators of disease burden, including spleen weight and the abundance of tumour cells in both the circulation and lymph nodes. Extended treatment of tumour-bearing mice with MK-2206 resulted in a significant delay in disease progression, associated with increased B-cell lymphoma apoptosis. Our findings suggest that malignant diseases characterized by unrestrained ribosome biogenesis may be vulnerable to therapeutic strategies that target the PI3K/AKT/mTORC1/MYC growth control network.
  • Item
    Thumbnail Image
    Dysregulation of RNA polymerase I transcription during disease
    Hannan, KM ; Sanij, E ; Rothblum, LI ; Hannan, RD ; Pearson, RB (ELSEVIER, 2013)
    Transcription of the ribosomal RNA genes by the dedicated RNA polymerase I enzyme and subsequent processing of the ribosomal RNA are fundamental control steps in the synthesis of functional ribosomes. Dysregulation of Pol I transcription and ribosome biogenesis is linked to the etiology of a broad range of human diseases. Diseases caused by loss of function mutations in the molecular constituents of the ribosome, or factors intimately associated with RNA polymerase I transcription and processing are collectively termed ribosomopathies. Ribosomopathies are generally rare and treatment options are extremely limited tending to be more palliative than curative. Other more common diseases are associated with profound changes in cellular growth such as cardiac hypertrophy, atrophy or cancer. In contrast to ribosomopathies, altered RNA polymerase I transcriptional activity in these diseases largely results from dysregulated upstream oncogenic pathways or by direct modulation by oncogenes or tumor suppressors at the level of the RNA polymerase I transcription apparatus itself. Ribosomopathies associated with mutations in ribosomal proteins and ribosomal RNA processing or assembly factors have been covered by recent excellent reviews. In contrast, here we review our current knowledge of human diseases specifically associated with dysregulation of RNA polymerase I transcription and its associated regulatory apparatus, including some cases where this dysregulation is directly causative in disease. We will also provide insight into and discussion of possible therapeutic approaches to treat patients with dysregulated RNA polymerase I transcription. This article is part of a Special Issue entitled: Transcription by Odd Pols.
  • Item
    Thumbnail Image
    Synergistic inhibition of ovarian cancer cell growth by combining selective PI3K/mTOR and RAS/ERK pathway inhibitors
    Sheppard, KE ; Cullinane, C ; Hannan, KM ; Wall, M ; Chan, J ; Barber, F ; Foo, J ; Cameron, D ; Neilsen, A ; Ng, P ; Ellul, J ; Kleinschmidt, M ; Kinross, KM ; Bowtell, DD ; Christensen, JG ; Hicks, RJ ; Johnstone, RW ; McArthur, GA ; Hannan, RD ; Phillips, WA ; Pearson, RB (ELSEVIER SCI LTD, 2013-12)
    BACKGROUND: Ovarian cancer is the major cause of death from gynaecological malignancy with a 5year survival of only ∼30% due to resistance to platinum and paclitaxel-based first line therapy. Dysregulation of the phosphoinositide 3-kinase/mammalian target of rapamycin (PI3K/mTOR) and RAS/extracellular signal-regulated kinase (ERK) pathways is common in ovarian cancer, providing potential new targets for 2nd line therapy. METHODS: We determined the inhibition of proliferation of an extensive panel of ovarian cancer cell lines, encompassing all the major histotypes, by the dual PI3K/mTOR inhibitor PF-04691502 and a MEK inhibitor, PD-0325901. In addition, we analysed global gene expression, mutation status of key PI3K/mTOR and RAS/ERK pathway members and pathway activation to identify predictors of drug response. RESULTS: PF-04691502 inhibits proliferation of the majority of cell lines with potencies that correlate with the extent of pathway inhibition. Resistant cell lines were characterised by activation of the RAS/ERK pathway as indicated by differential gene expression profiles and pathway activity analysis. PD-0325901 suppressed growth of a subset of cell lines that were characterised by high basal RAS/ERK signalling. Strikingly, using PF-04691502 and PD-0325901 in combination resulted in synergistic growth inhibition in 5/6 of PF-04691502 resistant cell lines and two cell lines resistant to both single agents showed robust synergistic growth arrest. Xenograft studies confirm the utility of combination therapy to synergistically inhibit tumour growth of PF-04691502-resistant tumours in vivo. CONCLUSIONS: These studies identify dual targeted inhibitors of PI3K/mTOR in combination with inhibitors of RAS/ERK signalling as a potentially effective new approach to treating ovarian cancer.
  • Item
    No Preview Available
    A functional siRNA screen identifies genes modulating angiotensin II-mediated EGFR transactivation
    George, AJ ; Purdue, BW ; Gould, CM ; Thomas, DW ; Handoko, Y ; Qian, H ; Quaife-Ryan, GA ; Morgan, KA ; Simpson, KJ ; Thomas, WG ; Hannan, RD (COMPANY BIOLOGISTS LTD, 2013-12-01)
    The angiotensin type 1 receptor (AT1R) transactivates the epidermal growth factor receptor (EGFR) to mediate cellular growth, however, the molecular mechanisms involved have not yet been resolved. To address this, we performed a functional siRNA screen of the human kinome in human mammary epithelial cells that demonstrate a robust AT1R-EGFR transactivation. We identified a suite of genes encoding proteins that both positively and negatively regulate AT1R-EGFR transactivation. Many candidates are components of EGFR signalling networks, whereas others, including TRIO, BMX and CHKA, have not been previously linked to EGFR transactivation. Individual knockdown of TRIO, BMX or CHKA attenuated tyrosine phosphorylation of the EGFR by angiotensin II stimulation, but this did not occur following direct stimulation of the EGFR with EGF, indicating that these proteins function between the activated AT1R and the EGFR. Further investigation of TRIO and CHKA revealed that their activity is likely to be required for AT1R-EGFR transactivation. CHKA also mediated EGFR transactivation in response to another G protein-coupled receptor (GPCR) ligand, thrombin, indicating a pervasive role for CHKA in GPCR-EGFR crosstalk. Our study reveals the power of unbiased, functional genomic screens to identify new signalling mediators important for tissue remodelling in cardiovascular disease and cancer.
  • Item
    Thumbnail Image
    Combined inhibition of PI3K-related DNA damage response kinases and mTORC1 induces apoptosis in MYC-driven B-cell lymphomas
    Shortt, J ; Martin, BP ; Newbold, A ; Hannan, KM ; Devlin, JR ; Baker, AJ ; Ralli, R ; Cullinane, C ; Schmitt, CA ; Reimann, M ; Hall, MN ; Wall, M ; Hannan, RD ; Pearson, RB ; McArthur, GA ; Johnstone, RW (AMER SOC HEMATOLOGY, 2013-04-11)
    Pharmacological strategies capable of directly targeting MYC are elusive. Previous studies have shown that MYC-driven lymphomagenesis is associated with mammalian target of rapamycin (mTOR) activation and a MYC-evoked DNA damage response (DDR) transduced by phosphatidylinositol-3-kinase (PI3K)-related kinases (DNA-PK, ATM, and ATR). Here we report that BEZ235, a multitargeted pan-PI3K/dual-mTOR inhibitor, potently killed primary Myc-driven B-cell lymphomas and human cell lines bearing IG-cMYC translocations. Using pharmacologic and genetic dissection of PI3K/mTOR signaling, dual DDR/mTORC1 inhibition was identified as a key mediator of apoptosis. Moreover, apoptosis was initiated at drug concentrations insufficient to antagonize PI3K/mTORC2-regulated AKT phosphorylation. p53-independent induction of the proapoptotic BH3-only protein BMF was identified as a mechanism by which dual DDR/mTORC1 inhibition caused lymphoma cell death. BEZ235 treatment induced apoptotic tumor regressions in vivo that correlated with suppression of mTORC1-regulated substrates and reduced H2AX phosphorylation and also with feedback phosphorylation of AKT. These mechanistic studies hold important implications for the use of multitargeted PI3K inhibitors in the treatment of hematologic malignancies. In particular, the newly elucidated role of PI3K-related DDR kinases in response to PI3K inhibitors offers a novel therapeutic opportunity for the treatment of hematologic malignancies with an MYC-driven DDR.