Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    Thumbnail Image
    Atypical ductal hyperplasia is a multipotent precursor of breast carcinoma
    Kader, T ; Hill, P ; Zethoven, M ; Goode, DL ; Elder, K ; Thio, N ; Doyle, M ; Semple, T ; Sufyan, W ; Byrne, DJ ; Pang, J-MB ; Murugasu, A ; Miligy, IM ; Green, AR ; Rakha, EA ; Fox, SB ; Mann, GB ; Campbell, IG ; Gorringe, KL (WILEY, 2019-07)
  • Item
    Thumbnail Image
    Molecular comparison of interval and screen-detected breast cancers
    Cheasley, D ; Li, N ; Rowley, SM ; Elder, K ; Mann, GB ; Loi, S ; Savas, P ; Goode, DL ; Kader, T ; Zethoven, M ; Semple, T ; Fox, SB ; Pang, J-M ; Byrne, D ; Devereux, L ; Nickson, C ; Procopio, P ; Lee, G ; Hughes, S ; Saunders, H ; Fujihara, KM ; Kuykhoven, K ; Connaughton, J ; James, PA ; Gorringe, KL ; Campbell, IG (WILEY, 2019-06)
  • Item
    Thumbnail Image
    Invasion in breast lesions: the role of the epithelial-stroma barrier
    Rakha, EA ; Miligy, IM ; Gorringe, KL ; Toss, MS ; Green, AR ; Fox, SB ; Schmitt, FC ; Tan, P-H ; Tse, GM ; Badve, S ; Decker, T ; Vincent-Salomon, A ; Dabbs, DJ ; Foschini, MP ; Moreno, F ; Yang, W ; Geyer, FC ; Reis-Filho, JS ; Pinder, SE ; Lakhani, SR ; Ellis, IO (WILEY, 2018-06)
    Despite the significant biological, behavioural and management differences between ductal carcinoma in situ (DCIS) and invasive carcinoma of the breast, they share many morphological and molecular similarities. Differentiation of these two different lesions in breast pathological diagnosis is based typically on the presence of an intact barrier between the malignant epithelial cells and stroma; namely, the myoepithelial cell (MEC) layer and surrounding basement membrane (BM). Despite being robust diagnostic criteria, the identification of MECs and BM to differentiate in-situ from invasive carcinoma is not always straightforward. The MEC layer around DCIS may be interrupted and/or show an altered immunoprofile. MECs may be absent in some benign locally infiltrative lesions such as microglandular adenosis and infiltrating epitheliosis, and occasionally in non-infiltrative conditions such as apocrine lesions, and in these contexts this does not denote malignancy or invasive disease with metastatic potential. MECs may also be absent around some malignant lesions such as some forms of papillary carcinoma, yet these behave in an indolent fashion akin to some DCIS. In Paget's disease, malignant mammary epithelial cells extend anteriorly from the ducts to infiltrate the epidermis of the nipple but do not typically infiltrate through the BM into the dermis. Conversely, BM-like material can be seen around invasive carcinoma cells and around metastatic tumour cell deposits. Here, we review the role of MECs and BM in breast pathology and highlight potential clinical implications. We advise caution in interpretation of MEC features in breast pathology and mindfulness of the substantive evidence base in the literature associated with behaviour and clinical outcome of lesions classified as benign on conventional morphological examination before changing classification to an invasive lesion on the sole basis of MEC characteristics.
  • Item
    Thumbnail Image
    Ductal Carcinoma In Situ Biology, Biomarkers, and Diagnosis
    Gorringe, KL ; Fox, SB (FRONTIERS MEDIA SA, 2017-10-23)
    Ductal carcinoma in situ (DCIS) is an often-diagnosed breast disease and a known, non-obligate, precursor to invasive breast carcinoma. In this review, we explore the clinical and pathological features of DCIS, fundamental elements of DCIS biology including gene expression and genetic events, the relationship of DCIS with recurrence and invasive breast cancer, and the interaction of DCIS with the microenvironment. We also survey how these various elements are being used to solve the clinical conundrum of how to optimally treat a disease that has potential to progress, and yet is also likely over-treated in a significant proportion of cases.
  • Item
    Thumbnail Image
    LRH-1 expression patterns in breast cancer tissues are associated with tumour aggressiveness
    Pang, J-MB ; Molania, R ; Chand, A ; Knower, K ; Takano, EA ; Byrne, DJ ; Mikeska, T ; Millar, EKA ; Lee, CS ; O'Toole, SA ; Clyne, C ; Gorringe, KL ; Dobrovic, A ; Fox, SB (IMPACT JOURNALS LLC, 2017-10-13)
    The significance and regulation of liver receptor homologue 1 (LRH-1, NR5A2), a tumour-promoting transcription factor in breast cancer cell lines, is unknown in clinical breast cancers. This study aims to determine LRH-1/NR5A2 expression in breast cancers and relationship with DNA methylation and tumour characteristics. In The Cancer Genome Atlas breast cancer cohort NR5A2 expression was positively associated with intragenic CpG island methylation (1.4-fold expression for fully methylated versus not fully methylated, p=0.01) and inversely associated with promoter CpG island methylation (0.6-fold expression for fully methylated versus not fully methylated, p=0.036). LRH-1 immunohistochemistry of 329 invasive carcinomas and ductal carcinoma in situ (DCIS) was performed. Densely punctate/coarsely granular nuclear reactivity was significantly associated with high tumour grade (p<0.005, p=0.033 in invasive carcinomas and DCIS respectively), negative estrogen receptor status (p=0.008, p=0.038 in overall cohort and invasive carcinomas, respectively), negative progesterone receptor status (p=0.003, p=0.013 in overall cohort and invasive carcinomas, respectively), HER2 amplification (overall cohort p=0.034) and non-luminal intrinsic subtype (p=0.018, p=0.038 in overall cohort and invasive carcinomas, respectively). These significant associations of LRH-1 protein expression with tumour phenotype suggest that LRH-1 is an important indicator of tumour biology in breast cancers and may be useful in risk stratification.
  • Item
    Thumbnail Image
    BRCA2 carriers with male breast cancer show elevated tumour methylation
    Deb, S ; Gorringe, KL ; Pang, J-MB ; Byrne, DJ ; Takano, EA ; Dobrovic, A ; Fox, SB (BIOMED CENTRAL LTD, 2017-09-11)
    BACKGROUND: Male breast cancer (MBC) represents a poorly characterised group of tumours, the management of which is largely based on practices established for female breast cancer. However, recent studies demonstrate biological and molecular differences likely to impact on tumour behaviour and therefore patient outcome. The aim of this study was to investigate methylation of a panel of commonly methylated breast cancer genes in familial MBCs. METHODS: 60 tumours from 3 BRCA1 and 25 BRCA2 male mutation carriers and 32 males from BRCAX families were assessed for promoter methylation by methylation-sensitive high resolution melting in a panel of 10 genes (RASSF1A, TWIST1, APC, WIF1, MAL, RARβ, CDH1, RUNX3, FOXC1 and GSTP1). An average methylation index (AMI) was calculated for each case comprising the average of the methylation of the 10 genes tested as an indicator of overall tumour promoter region methylation. Promoter hypermethylation and AMI were correlated with BRCA carrier mutation status and clinicopathological parameters including tumour stage, grade, histological subtype and disease specific survival. RESULTS: Tumours arising in BRCA2 mutation carriers showed significantly higher methylation of candidate genes, than those arising in non-BRCA2 familial MBCs (average AMI 23.6 vs 16.6, p = 0.01, 45% of genes hypermethylated vs 34%, p < 0.01). RARβ methylation and AMI-high status were significantly associated with tumour size (p = 0.01 and p = 0.02 respectively), RUNX3 methylation with invasive carcinoma of no special type (94% vs 69%, p = 0.046) and RASSF1A methylation with coexistence of high grade ductal carcinoma in situ (33% vs 6%, p = 0.02). Cluster analysis showed MBCs arising in BRCA2 mutation carriers were characterised by RASSF1A, WIF1, RARβ and GTSP1 methylation (p = 0.02) whereas methylation in BRCAX tumours showed no clear clustering to particular genes. TWIST1 methylation (p = 0.001) and AMI (p = 0.01) were prognostic for disease specific survival. CONCLUSIONS: Increased methylation defines a subset of familial MBC and with AMI may be a useful prognostic marker. Methylation might be predictive of response to novel therapeutics that are currently under investigation in other cancer types.