Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 8 of 8
  • Item
    Thumbnail Image
    Interfacing Seurat with the R tidy universe
    Mangiola, S ; Doyle, MA ; Papenfuss, AT ; Mathelier, A (OXFORD UNIV PRESS, 2021-11-15)
    MOTIVATION: Seurat is one of the most popular software suites for the analysis of single-cell RNA sequencing data. Considering the popularity of the tidyverse ecosystem, which offers a large set of data display, query, manipulation, integration and visualization utilities, a great opportunity exists to interface the Seurat object with the tidyverse. This interface gives the large data science community of tidyverse users the possibility to operate with familiar grammar. RESULTS: To provide Seurat with a tidyverse-oriented interface without compromising efficiency, we developed tidyseurat, a lightweight adapter to the tidyverse. Tidyseurat displays cell information as a tibble abstraction, allowing intuitively interfacing Seurat with dplyr, tidyr, ggplot2 and plotly packages powering efficient data manipulation, integration and visualization. Iterative analyses on data subsets are enabled by interfacing with the popular nest-map framework. AVAILABILITY AND IMPLEMENTATION: The software is freely available at cran.r-project.org/web/packages/tidyseurat and github.com/stemangiola/tidyseurat. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
  • Item
    Thumbnail Image
    RNA-Seq Data Analysis in Galaxy
    Batut, B ; van den Beek, M ; Doyle, MA ; Soranzo, N ; Picardi, E (HUMANA PRESS INC, 2021)
    A complete RNA-Seq analysis involves the use of several different tools, with substantial software and computational requirements. The Galaxy platform simplifies the execution of such bioinformatics analyses by embedding the needed tools in its web interface, while also providing reproducibility. Here, we describe how to perform a reference-based RNA-Seq analysis using Galaxy, from data upload to visualization and functional enrichment analysis of differentially expressed genes.
  • Item
    Thumbnail Image
    A TOOLKIT FOR THE QUANTITATIVE ANALYSIS OF THE SPATIAL DISTRIBUTION OF CELLS OF THE TUMOR IMMUNE MICROENVIRONMENT
    Trigos, A ; Yang, T ; Feng, Y ; Ozcoban, V ; Doyle, M ; Pasam, A ; Kocovski, N ; Pizzolla, A ; Huang, Y-K ; Bass, G ; Keam, S ; Speed, T ; Neeson, P ; Sandhu, S ; Goode, D (BMJ PUBLISHING GROUP, 2020-11)
  • Item
    Thumbnail Image
    A single-cell RNA-sequencing training and analysis suite using the Galaxy framework
    Tekman, M ; Batut, B ; Ostrovsky, A ; Antoniewski, C ; Clements, D ; Ramirez, F ; Etherington, GJ ; Hotz, H-R ; Scholtalbers, J ; Manning, JR ; Bellenger, L ; Doyle, MA ; Heydarian, M ; Huang, N ; Soranzo, N ; Moreno, P ; Mautner, S ; Papatheodorou, I ; Nekrutenko, A ; Taylor, J ; Blankenberg, D ; Backofen, R ; Gruening, B (OXFORD UNIV PRESS, 2020-10)
    BACKGROUND: The vast ecosystem of single-cell RNA-sequencing tools has until recently been plagued by an excess of diverging analysis strategies, inconsistent file formats, and compatibility issues between different software suites. The uptake of 10x Genomics datasets has begun to calm this diversity, and the bioinformatics community leans once more towards the large computing requirements and the statistically driven methods needed to process and understand these ever-growing datasets. RESULTS: Here we outline several Galaxy workflows and learning resources for single-cell RNA-sequencing, with the aim of providing a comprehensive analysis environment paired with a thorough user learning experience that bridges the knowledge gap between the computational methods and the underlying cell biology. The Galaxy reproducible bioinformatics framework provides tools, workflows, and trainings that not only enable users to perform 1-click 10x preprocessing but also empower them to demultiplex raw sequencing from custom tagged and full-length sequencing protocols. The downstream analysis supports a range of high-quality interoperable suites separated into common stages of analysis: inspection, filtering, normalization, confounder removal, and clustering. The teaching resources cover concepts from computer science to cell biology. Access to all resources is provided at the singlecell.usegalaxy.eu portal. CONCLUSIONS: The reproducible and training-oriented Galaxy framework provides a sustainable high-performance computing environment for users to run flexible analyses on both 10x and alternative platforms. The tutorials from the Galaxy Training Network along with the frequent training workshops hosted by the Galaxy community provide a means for users to learn, publish, and teach single-cell RNA-sequencing analysis.
  • Item
    Thumbnail Image
    CDK13 cooperates with CDK12 to control global RNA polymerase II processivity
    Fan, Z ; Devlin, JR ; Hogg, SJ ; Doyle, MA ; Harrison, PF ; Todorovski, I ; Cluse, LA ; Knight, DA ; Sandow, JJ ; Gregory, G ; Fox, A ; Beilharz, TH ; Kwiatkowski, N ; Scott, NE ; Vidakovic, AT ; Kelly, GP ; Svejstrup, JQ ; Geyer, M ; Gray, NS ; Vervoort, SJ ; Johnstone, RW (AMER ASSOC ADVANCEMENT SCIENCE, 2020-04-01)
    The RNA polymerase II (POLII)-driven transcription cycle is tightly regulated at distinct checkpoints by cyclin-dependent kinases (CDKs) and their cognate cyclins. The molecular events underpinning transcriptional elongation, processivity, and the CDK-cyclin pair(s) involved remain poorly understood. Using CRISPR-Cas9 homology-directed repair, we generated analog-sensitive kinase variants of CDK12 and CDK13 to probe their individual and shared biological and molecular roles. Single inhibition of CDK12 or CDK13 induced transcriptional responses associated with cellular growth signaling pathways and/or DNA damage, with minimal effects on cell viability. In contrast, dual kinase inhibition potently induced cell death, which was associated with extensive genome-wide transcriptional changes including widespread use of alternative 3' polyadenylation sites. At the molecular level, dual kinase inhibition resulted in the loss of POLII CTD phosphorylation and greatly reduced POLII elongation rates and processivity. These data define substantial redundancy between CDK12 and CDK13 and identify both as fundamental regulators of global POLII processivity and transcription elongation.
  • Item
    Thumbnail Image
    Germline whole exome sequencing of a family with appendiceal mucinous tumours presenting with pseudomyxoma peritonei
    Lung, MS ; Mitchell, CA ; Doyle, MA ; Lynch, AC ; Gorringe, KL ; Bowtell, DDL ; Campbell, IG ; Trainer, AH (BMC, 2020-05-01)
    BACKGROUND: Familial cases of appendiceal mucinous tumours (AMTs) are extremely rare and the underlying genetic aetiology uncertain. We identified potential predisposing germline genetic variants in a father and daughter with AMTs presenting with pseudomyxoma peritonei (PMP) and correlated these with regions of loss of heterozygosity (LOH) in the tumours. METHODS: Through germline whole exome sequencing, we identified novel heterozygous loss-of-function (LoF) (i.e. nonsense, frameshift and essential splice site mutations) and missense variants shared between father and daughter, and validated all LoF variants, and missense variants with a Combined Annotation Dependent Depletion (CADD) scaled score of ≥10. Genome-wide copy number analysis was performed on tumour tissue from both individuals to identify regions of LOH. RESULTS: Fifteen novel variants in 15 genes were shared by the father and daughter, including a nonsense mutation in REEP5. None of these germline variants were located in tumour regions of LOH shared by the father and daughter. Four genes (EXOG, RANBP2, RANBP6 and TNFRSF1B) harboured missense variants that fell in a region of LOH in the tumour from the father only, but none showed somatic loss of the wild type allele in the tumour. The REEP5 gene was sequenced in 23 individuals with presumed sporadic AMTs or PMP; no LoF or rare missense germline variants were identified. CONCLUSION: Germline exome sequencing of a father and daughter with AMTs identified novel candidate predisposing genes. Further studies are required to clarify the role of these genes in familial AMTs.
  • Item
    Thumbnail Image
    CDK13 cooperates with CDK12 to control global RNA polymerase II processivity.
    Fan, Z ; Devlin, JR ; Hogg, SJ ; Doyle, MA ; Harrison, PF ; Todorovski, I ; Cluse, LA ; Knight, DA ; Sandow, JJ ; Gregory, G ; Fox, A ; Beilharz, TH ; Kwiatkowski, N ; Scott, NE ; Vidakovic, AT ; Kelly, GP ; Svejstrup, JQ ; Geyer, M ; Gray, NS ; Vervoort, SJ ; Johnstone, RW (AMER ASSOC ADVANCEMENT SCIENCE, 2020-05)
    The RNA polymerase II (POLII)-driven transcription cycle is tightly regulated at distinct checkpoints by cyclin-dependent kinases (CDKs) and their cognate cyclins. The molecular events underpinning transcriptional elongation, processivity, and the CDK-cyclin pair(s) involved remain poorly understood. Using CRISPR-Cas9 homology-directed repair, we generated analog-sensitive kinase variants of CDK12 and CDK13 to probe their individual and shared biological and molecular roles. Single inhibition of CDK12 or CDK13 induced transcriptional responses associated with cellular growth signaling pathways and/or DNA damage, with minimal effects on cell viability. In contrast, dual kinase inhibition potently induced cell death, which was associated with extensive genome-wide transcriptional changes including widespread use of alternative 3' polyadenylation sites. At the molecular level, dual kinase inhibition resulted in the loss of POLII CTD phosphorylation and greatly reduced POLII elongation rates and processivity. These data define substantial redundancy between CDK12 and CDK13 and identify both as fundamental regulators of global POLII processivity and transcription elongation.
  • Item
    Thumbnail Image
    Molecular comparison of pure ovarian fibroma with serous benign ovarian tumours
    Hunter, SM ; Dall, GV ; Doyle, MA ; Lupat, R ; Li, J ; Allan, P ; Rowley, SM ; Bowtell, D ; Campbell, IG ; Gorringe, KL (SPRINGERNATURE, 2020-07-22)
    OBJECTIVE: Ovarian fibromas and adenofibromas are rare ovarian tumours. They are benign tumours composed of spindle-like stromal cells (pure fibroma) or a mixture of fibroblast and epithelial components (adenofibroma). We have previously shown that 40% of benign serous ovarian tumours are likely primary fibromas due to the neoplastic alterations being restricted to the stromal compartment of these tumours. We further explore this finding by comparing benign serous tumours to pure fibromas. RESULTS: Performing copy number aberration (CNA) analysis on the stromal component of 45 benign serous tumours and 8 pure fibromas, we have again shown that trisomy of chromosome 12 is the most common aberration in ovarian fibromas. CNAs were more frequent in the pure fibromas than the benign serous tumours (88% vs 33%), however pure fibromas more frequently harboured more than one CNA event compared with benign serous tumours. As these extra CNA events observed in the pure fibromas were unique to this subset our data indicates a unique tumour evolution. Gene expression analysis on the two cohorts was unable to show gene expression changes that differed based on tumour subtype. Exome analysis did not reveal any recurrently mutated genes.