Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Germline whole exome sequencing of a family with appendiceal mucinous tumours presenting with pseudomyxoma peritonei
    Lung, MS ; Mitchell, CA ; Doyle, MA ; Lynch, AC ; Gorringe, KL ; Bowtell, DDL ; Campbell, IG ; Trainer, AH (BMC, 2020-05-01)
    BACKGROUND: Familial cases of appendiceal mucinous tumours (AMTs) are extremely rare and the underlying genetic aetiology uncertain. We identified potential predisposing germline genetic variants in a father and daughter with AMTs presenting with pseudomyxoma peritonei (PMP) and correlated these with regions of loss of heterozygosity (LOH) in the tumours. METHODS: Through germline whole exome sequencing, we identified novel heterozygous loss-of-function (LoF) (i.e. nonsense, frameshift and essential splice site mutations) and missense variants shared between father and daughter, and validated all LoF variants, and missense variants with a Combined Annotation Dependent Depletion (CADD) scaled score of ≥10. Genome-wide copy number analysis was performed on tumour tissue from both individuals to identify regions of LOH. RESULTS: Fifteen novel variants in 15 genes were shared by the father and daughter, including a nonsense mutation in REEP5. None of these germline variants were located in tumour regions of LOH shared by the father and daughter. Four genes (EXOG, RANBP2, RANBP6 and TNFRSF1B) harboured missense variants that fell in a region of LOH in the tumour from the father only, but none showed somatic loss of the wild type allele in the tumour. The REEP5 gene was sequenced in 23 individuals with presumed sporadic AMTs or PMP; no LoF or rare missense germline variants were identified. CONCLUSION: Germline exome sequencing of a father and daughter with AMTs identified novel candidate predisposing genes. Further studies are required to clarify the role of these genes in familial AMTs.
  • Item
    Thumbnail Image
    Molecular comparison of pure ovarian fibroma with serous benign ovarian tumours
    Hunter, SM ; Dall, GV ; Doyle, MA ; Lupat, R ; Li, J ; Allan, P ; Rowley, SM ; Bowtell, D ; Campbell, IG ; Gorringe, KL (SPRINGERNATURE, 2020-07-22)
    OBJECTIVE: Ovarian fibromas and adenofibromas are rare ovarian tumours. They are benign tumours composed of spindle-like stromal cells (pure fibroma) or a mixture of fibroblast and epithelial components (adenofibroma). We have previously shown that 40% of benign serous ovarian tumours are likely primary fibromas due to the neoplastic alterations being restricted to the stromal compartment of these tumours. We further explore this finding by comparing benign serous tumours to pure fibromas. RESULTS: Performing copy number aberration (CNA) analysis on the stromal component of 45 benign serous tumours and 8 pure fibromas, we have again shown that trisomy of chromosome 12 is the most common aberration in ovarian fibromas. CNAs were more frequent in the pure fibromas than the benign serous tumours (88% vs 33%), however pure fibromas more frequently harboured more than one CNA event compared with benign serous tumours. As these extra CNA events observed in the pure fibromas were unique to this subset our data indicates a unique tumour evolution. Gene expression analysis on the two cohorts was unable to show gene expression changes that differed based on tumour subtype. Exome analysis did not reveal any recurrently mutated genes.