Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 9 of 9
  • Item
    No Preview Available
    Predicting Malignancy in FDG-avid Thyroid Nodules based on Standardized Uptake Value in Oncology Patients
    Bozin, M ; Callahan, J ; Drummond, E ; Henderson, M ; Skandarajah, A (Jaypee Brothers Medical Publishing, 2021-03-01)
  • Item
    Thumbnail Image
    The role of 18F-FDG PET/CT in retroperitoneal sarcomas-A multicenter retrospective study
    Subramaniam, S ; Callahan, J ; Bressel, M ; Hofman, MS ; Mitchell, C ; Hendry, S ; Vissers, FL ; Van Der Hiel, B ; Patel, D ; Van Houdt, WJ ; Tseng, WW ; Gyorki, DE (WILEY, 2021-03)
    BACKGROUND: The role of 18 F-fluorodeoxyglucose positron emission tomography/computed tomography (18 F-FDG PET/CT) in the evaluation of retroperitoneal sarcomas is poorly defined. We evaluated the correlation of maximum standardized uptake value (SUVmax) with pathologic tumor grade in the surgical specimen of primary retroperitoneal dedifferentiated liposarcoma (DDLPS) and leiomyosarcoma (LMS). METHODS: Patients with the above histological subtypes in three participating institutions with preoperative 18 F-FDG PET/CT scan and histopathological specimen available for review were included. The association between SUVmax and pathological grade was assessed. Correlation between SUVmax and relapse-free survival (RFS) and overall survival (OS) were also studied. RESULTS: Of the total 58 patients, final pathological subtype was DDLPS in 44 (75.9%) patients and LMS in 14 (24.1%) patients. The mean SUVmax was 8.7 with a median 7.1 (range, 2.2-33.9). The tumors were graded I, II, III in 6 (10.3%), 35 (60.3%), and 17 (29.3%) patients, respectively. There was an association of higher histological grade with higher SUVmax (rs  = 0.40, p = .002). Increasing SUVmax was associated with worse RFS (p = .003) and OS (p = .003). CONCLUSION: There is a correlation between SUVmax and pathologic tumor grade; increasing SUVmax was associated with worse OS and RFS, providing a preoperative noninvasive surrogate marker of tumor grade and biological behavior.
  • Item
    Thumbnail Image
    FDG-PET/CT imaging for evaluating durable responses to immune check point inhibitors in patients with advanced cutaneous squamous cell carcinoma
    McLean, LS ; Cavanagh, K ; Hicks, RJ ; Callahan, J ; Xie, J ; Cardin, A ; Lim, AM ; Rischin, D (BMC, 2021-10-13)
    BACKGROUND: The role of FDG-PET/CT imaging in assessing response to immunotherapy in advanced cutaneous squamous cell carcinoma (CSCC) is unknown. This study compared complete metabolic response (CMR) rates by FDG-PET and RECIST1.1 via CT or MRI in patients on cemiplimab for > 10 months. METHODS: This was a single-centre retrospective study of 15 patients treated with cemiplimab for advanced CSCC who had CT/MRI and FDG-PET/CT at > 10 months to assess metabolic treatment response. The median age was 73 years (range 55-84) and 93% were male. RECIST1.1 and PERCIST1.0 tumor responses were evaluated by blinded readers. RESULTS: Seventy-three percent (11/15) (95%CI 44.9, 92.2%) achieved a CMR on PET. Of these 11, on RECIST1.1 there was one complete response, 9 partial responses and one stable disease. CONCLUSIONS: In patients on cemiplimab for > 10 months, there was discordance between CR rates on FDG-PET versus RECIST1.1. FDG-PET/CT may have utility for clarifying depth of response in patients treated with immunotherapy for CSCC.
  • Item
    Thumbnail Image
    Automated assessment of functional lung imaging with 68Ga-ventilation/perfusion PET/CT using iterative histogram analysis
    McIntosh, L ; Jackson, P ; Hardcastle, N ; Bressel, M ; Kron, T ; Callahan, JW ; Steinfort, D ; Bucknell, N ; Hofman, MS ; Siva, S (SPRINGER, 2021-03-07)
    PURPOSE: Functional lung mapping from Ga68-ventilation/perfusion (V/Q) PET/CT, which has been shown to correlate with pulmonary function tests (PFTs), may be beneficial in a number of clinical applications where sparing regions of high lung function is of interest. Regions of clumping in the proximal airways in patients with airways disease can result in areas of focal intense activity and artefact in ventilation imaging. These artefacts may even shine through to subsequent perfusion images and create a challenge for quantitative analysis of PET imaging. We aimed to develop an automated algorithm that interprets the uptake histogram of PET images to calculate a peak uptake value more representative of the global lung volume. METHODS: Sixty-six patients recruited from a prospective clinical trial underwent both V/Q PET/CT imaging and PFT analysis before treatment. PET images were normalised using an iterative histogram analysis technique to account for tracer hotspots prior to the threshold-based delineation of varying values. Pearson's correlation between fractional lung function and PFT score was calculated for ventilation, perfusion, and matched imaging volumes at varying threshold values. RESULTS: For all functional imaging thresholds, only FEV1/FVC PFT yielded reasonable correlations to image-based functional volume. For ventilation, a range of 10-30% of adapted peak uptake value provided a reasonable threshold to define a volume that correlated with FEV1/FVC (r = 0.54-0.61). For perfusion imaging, a similar correlation was observed (r = 0.51-0.56) in the range of 20-60% adapted peak threshold. Matched volumes were closely linked to ventilation with a threshold range of 15-35% yielding a similar correlation (r = 0.55-0.58). CONCLUSIONS: Histogram normalisation may be implemented to determine the presence of tracer clumping hotspots in Ga-68 V/Q PET imaging allowing for automated delineation of functional lung and standardisation of functional volume reporting.
  • Item
    Thumbnail Image
    Single-arm prospective interventional study assessing feasibility of using gallium-68 ventilation and perfusion PET/CT to avoid functional lung in patients with stage III non-small cell lung cancer
    Bucknell, N ; Hardcastle, N ; Jackson, P ; Hofman, M ; Callahan, J ; Eu, P ; Iravani, A ; Lawrence, R ; Martin, O ; Bressel, M ; Woon, B ; Blyth, B ; MacManus, M ; Byrne, K ; Steinfort, D ; Kron, T ; Hanna, G ; Ball, D ; Siva, S (BMJ PUBLISHING GROUP, 2020)
    BACKGROUND: In the curative-intent treatment of locally advanced lung cancer, significant morbidity and mortality can result from thoracic radiation therapy. Symptomatic radiation pneumonitis occurs in one in three patients and can lead to radiation-induced fibrosis. Local failure occurs in one in three patients due to the lungs being a dose-limiting organ, conventionally restricting tumour doses to around 60 Gy. Functional lung imaging using positron emission tomography (PET)/CT provides a geographic map of regional lung function and preclinical studies suggest this enables personalised lung radiotherapy. This map of lung function can be integrated into Volumetric Modulated Arc Therapy (VMAT) radiotherapy planning systems, enabling conformal avoidance of highly functioning regions of lung, thereby facilitating increased doses to tumour while reducing normal tissue doses. METHODS AND ANALYSIS: This prospective interventional study will investigate the use of ventilation and perfusion PET/CT to identify highly functioning lung volumes and avoidance of these using VMAT planning. This single-arm trial will be conducted across two large public teaching hospitals in Australia. Twenty patients with stage III non-small cell lung cancer will be recruited. All patients enrolled will receive dose-escalated (69 Gy) functional avoidance radiation therapy. The primary endpoint is feasibility with this achieved if ≥15 out of 20 patients meet pre-defined feasibility criteria. Patients will be followed for 12 months post-treatment with serial imaging, biomarkers, toxicity assessment and quality of life assessment. DISCUSSION: Using advanced techniques such as VMAT functionally adapted radiation therapy may enable safe moderate dose escalation with an aim of improving local control and concurrently decreasing treatment related toxicity. If this technique is proven feasible, it will inform the design of a prospective randomised trial to assess the clinical benefits of functional lung avoidance radiation therapy. ETHICS AND DISSEMINATION: This study was approved by the Peter MacCallum Human Research Ethics Committee. All participants will provide written informed consent. Results will be disseminated via publications. TRIALS REGISTRATION NUMBER: NCT03569072; Pre-results.
  • Item
    Thumbnail Image
    Clinical, FDG-PET and molecular markers of immune checkpoint inhibitor response in patients with metastatic Merkel cell carcinoma
    Weppler, AM ; Pattison, A ; Bhave, P ; De Ieso, P ; Raleigh, J ; Hatzimihalis, A ; Gill, AJ ; Balachander, S ; Callahan, J ; Chua, M ; Au-Yeung, G ; McArthur, GA ; Hicks, RJ ; Tothill, RW ; Sandhu, S (BMJ PUBLISHING GROUP, 2020)
    BACKGROUND: Metastatic Merkel cell carcinoma (mMCC) is an aggressive neuroendocrine malignancy of the skin with a poor prognosis. Immune checkpoint inhibitors (ICIs) have shown substantial efficacy and favorable safety in clinical trials. METHODS: Medical records of patients (pts) with mMCC treated with ICIs from August 2015 to December 2018 at Peter MacCallum Cancer Centre in Australia were analyzed. Response was assessed with serial imaging, the majority with FDG-PET/CT scans. RNA sequencing and immunohistochemistry for PD-L1, CD3 and Merkel cell polyomavirus (MCPyV) on tumor samples was performed. RESULTS: 23 pts with mMCC were treated with ICIs. A median of 8 cycles (range 1 to 47) were administered, with treatment ongoing in 6 pts. Objective responses (OR) were observed in 14 pts (61%): 10 (44%) complete responses (CR) and 4 (17%) partial responses (PR). Median time to response was 8 weeks (range 6 to 12) and 12-month progression-free survival rate was 39%. Increased OR were seen in pts aged less than 75 (OR 80% vs 46%), no prior history of chemotherapy (OR 64% vs 50%), patients with an immune-related adverse event (OR 100% vs 43%) and in MCPyV-negative tumors (OR 69% vs 43%). Pts with a CR had lower mean metabolic tumor volume on baseline FDG-PET/CT scan (CR: 35.7 mL, no CR: 187.8 mL, p=0.05). There was no correlation between PD-L1 positivity and MCPyV status (p=0.764) or OR (p=0.245). 10 pts received radiation therapy (RT) during ICI: 4 pts started RT concurrently (OR 75%, CR 50%), 3 pts had isolated ICI-resistant lesions successfully treated with RT and 3 pts with multisite progression continued to progress despite RT. Overall, 6 pts (26%) had grade 1-2 immune-related adverse events. CONCLUSION: ICIs showed efficacy and safety in mMCC consistent with trial data. Clinical and imaging predictors of response were identified.
  • Item
    Thumbnail Image
    F-18-FDG PET/CT based spleen to liver ratio associates with clinical outcome to ipilimumab in patients with metastatic melanoma
    Wong, A ; Callahan, J ; Keyaerts, M ; Neyns, B ; Mangana, J ; Aberle, S ; Herschtal, A ; Fullerton, S ; Milne, D ; Iravani, A ; McArthur, GA ; Hicks, RJ (BMC, 2020-05-14)
    Background Immune checkpoint blockade such as ipilimumab and anti-PD1 monoclonal antibodies have significantly improved survival in advanced melanoma. Biomarkers are urgently needed as a majority of patients do not respond, despite treatment-related toxicities. We analysed pre-treatment 18F-fluorodeoxyglucose positron emission tomography/computerised tomography (FDG PET/CT) parameters to assess its correlation with patient outcome. Methods This retrospective study evaluated pre-treatment FDG PET/CT scans in a discovery cohort of patients with advanced melanoma treated with ipilimumab or anti-PD1. Pre-treatment scans were assessed for maximum tumoral standardised uptake value (SUVmax), metabolic tumour volume (MTV) and spleen to liver ratio (SLR). Progression-free survival (PFS) and overall survival (OS) were characterised and modelled using univariable and multivariable analyses. Correlation of SLR and OS was validated in an independent cohort. Blood parameters and stored sera of patients from the discovery cohort was analysed to investigate biological correlates with SLR. Results Of the 90 evaluable patients in the discovery cohort: 50 received ipilimumab monotherapy, 20 received anti-PD1 monotherapy, and 20 patients received ipilimumab followed by anti-PD1 upon disease progression. High SLR > 1.1 was associated with poor PFS (median 1 vs 3 months; HR 3.14, p = 0.008) for patients treated with ipilimumab. High SLR was associated with poor OS after ipilimumab (median 1 vs 21 months; HR 5.83, p = 0.0001); as well as poor OS after first line immunotherapy of either ipilimumab or anti-PD1 (median 1 vs 14 months; HR 3.92, p = 0.003). The association of high SLR and poor OS after ipilimumab was validated in an independent cohort of 110 patients (median 2.3 months versus 11.9 months, HR 3.74). SLR was associated with poor OS in a multi-variable model independent of stage, LDH, absolute lymphocyte count and MTV. Conclusions Pre-treatment Spleen to liver ratio (SLR) > 1.1 was associated with poor outcome after ipilimumab in advanced melanoma. This parameter warrants prospective evaluation.
  • Item
    Thumbnail Image
    Correlation of positron emission tomography ventilation-perfusion matching with CT densitometry in severe emphysema
    Bonney, A ; Wagner, C-A ; Siva, S ; Callahan, J ; Le Roux, P-Y ; Pascoe, DM ; Irving, L ; Hofman, MS ; Steinfort, DP (SPRINGER, 2020-07-28)
    BACKGROUND: Emphysema severity is frequently measured on CT via densitometry. Correlation with scintigraphic and spirometric functional measures of ventilation or perfusion varies widely, and no prior study has evaluated correlation between densitometry and lobar ventilation/perfusion in patients with severe emphysema. The aim of this study was to evaluate the utility and findings of gallium-68 (68Ga) ventilation/perfusion positron emission tomography-CT (68Ga-VQ/PET-CT) in severe emphysema assessment. METHODS: Fourteen consecutive patients undergoing evaluation for bronchoscopic lung volume reduction between March 2015 and March 2018 underwent 68Ga-VQ/PET-CT assessment for lobar functional lung mapping, in addition to CT densitometry. Correlations between CT densitometry and 68Ga-VQ/PET-CT parameters for individual lobar lung function were sought. RESULTS: CT densitometry assessment of emphysema correlated only weakly (R2 = 0.13) with lobar perfusion and was not correlated with ventilation (R2 = 0.04). Densitometry was moderately (R2 = 0.67) correlated with V/Q units in upper lobes, though poorly reflected physiological function in lower lobes (R2 = 0.19). Emphysema severity, as measured by CT densitometry, was moderately correlated with proportion of normal V/Q units and matched V/Q defects in individual lobes. CONCLUSIONS: Assessment of lobar pulmonary function by 68Ga-VQ/PET-CT provides physiologic information not evident on CT densitometry such as ventilation and perfusion specifics and matched defects. Further research is needed to see if the discordant findings on 68Ga-VQ/PET-CT provide prognostic information or can be used to modify patient management and improve outcomes.
  • Item
    Thumbnail Image
    Robust, independent and relevant prognostic 18F-fluorodeoxyglucose positron emission tomography radiomics features in non-small cell lung cancer: Are there any?
    Konert, T ; Everitt, S ; La Fontaine, MD ; van de Kamer, JB ; MacManus, MP ; Vogel, WV ; Callahan, J ; Sonke, J-J ; Albano, D (PUBLIC LIBRARY SCIENCE, 2020-02-25)
    In locally advanced lung cancer, established baseline clinical variables show limited prognostic accuracy and 18F-fluorodeoxyglucose positron emission tomography (FDG PET) radiomics features may increase accuracy for optimal treatment selection. Their robustness and added value relative to current clinical factors are unknown. Hence, we identify robust and independent PET radiomics features that may have complementary value in predicting survival endpoints. A 4D PET dataset (n = 70) was used for assessing the repeatability (Bland-Altman analysis) and independence of PET radiomics features (Spearman rank: |ρ|<0.5). Two 3D PET datasets combined (n = 252) were used for training and validation of an elastic net regularized generalized logistic regression model (GLM) based on a selection of clinical and robust independent PET radiomics features (GLMall). The fitted model performance was externally validated (n = 40). The performance of GLMall (measured with area under the receiver operating characteristic curve, AUC) was highest in predicting 2-year overall survival (0.66±0.07). No significant improvement was observed for GLMall compared to a model containing only PET radiomics features or only clinical variables for any clinical endpoint. External validation of GLMall led to AUC values no higher than 0.55 for any clinical endpoint. In this study, robust independent FDG PET radiomics features did not have complementary value in predicting survival endpoints in lung cancer patients. Improving risk stratification and clinical decision making based on clinical variables and PET radiomics features has still been proven difficult in locally advanced lung cancer patients.