Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    No Preview Available
    An International Expert Survey on the Indications and Practice of Radical Thoracic Reirradiation for Non-Small Cell Lung Cancer
    Rulach, R ; Ball, D ; Chua, KLM ; Dahele, M ; De Ruysscher, D ; Franks, K ; Gomez, D ; Guckenberger, M ; Hanna, GG ; Louie, AV ; Moghanaki, D ; Palma, DA ; Peedell, C ; Salem, A ; Siva, S ; Videtic, GMM ; Chalmers, AJ ; Harrow, S (ELSEVIER INC, 2021)
    PURPOSE: Thoracic reirradiation for non-small cell lung cancer with curative intent is potentially associated with severe toxicity. There are limited prospective data on the best method to deliver this treatment. We sought to develop expert consensus guidance on the safe practice of treating non-small cell lung cancer with radiation therapy in the setting of prior thoracic irradiation. METHODS AND MATERIALS: Twenty-one thoracic radiation oncologists were invited to participate in an international Delphi consensus process. Guideline statements were developed and refined during 4 rounds on the definition of reirradiation, selection of appropriate patients, pretreatment assessments, planning of radiation therapy, and cumulative dose constraints. Consensus was achieved once ≥75% of respondents agreed with a statement. Statements that did not reach consensus in the initial survey rounds were revised based on respondents' comments and re-presented in subsequent rounds. RESULTS: Fifteen radiation oncologists participated in the 4 surveys between September 2019 and March 2020. The first 3 rounds had a 100% response rate, and the final round was completed by 93% of participants. Thirty-three out of 77 statements across all rounds achieved consensus. Key recommendations are as follows: (1) appropriate patients should have a good performance status and can have locally relapsed disease or second primary cancers, and there are no absolute lung function values that preclude reirradiation; (2) a full diagnostic workup should be performed in patients with suspected local recurrence and; (3) any reirradiation should be delivered using optimal image guidance and highly conformal techniques. In addition, consensus cumulative dose for the organs at risk in the thorax are described. CONCLUSIONS: These consensus statements provide practical guidance on appropriate patient selection for reirradiation, appropriate radiation therapy techniques, and cumulative dose constraints.
  • Item
    Thumbnail Image
    Single-arm prospective interventional study assessing feasibility of using gallium-68 ventilation and perfusion PET/CT to avoid functional lung in patients with stage III non-small cell lung cancer
    Bucknell, N ; Hardcastle, N ; Jackson, P ; Hofman, M ; Callahan, J ; Eu, P ; Iravani, A ; Lawrence, R ; Martin, O ; Bressel, M ; Woon, B ; Blyth, B ; MacManus, M ; Byrne, K ; Steinfort, D ; Kron, T ; Hanna, G ; Ball, D ; Siva, S (BMJ PUBLISHING GROUP, 2020)
    BACKGROUND: In the curative-intent treatment of locally advanced lung cancer, significant morbidity and mortality can result from thoracic radiation therapy. Symptomatic radiation pneumonitis occurs in one in three patients and can lead to radiation-induced fibrosis. Local failure occurs in one in three patients due to the lungs being a dose-limiting organ, conventionally restricting tumour doses to around 60 Gy. Functional lung imaging using positron emission tomography (PET)/CT provides a geographic map of regional lung function and preclinical studies suggest this enables personalised lung radiotherapy. This map of lung function can be integrated into Volumetric Modulated Arc Therapy (VMAT) radiotherapy planning systems, enabling conformal avoidance of highly functioning regions of lung, thereby facilitating increased doses to tumour while reducing normal tissue doses. METHODS AND ANALYSIS: This prospective interventional study will investigate the use of ventilation and perfusion PET/CT to identify highly functioning lung volumes and avoidance of these using VMAT planning. This single-arm trial will be conducted across two large public teaching hospitals in Australia. Twenty patients with stage III non-small cell lung cancer will be recruited. All patients enrolled will receive dose-escalated (69 Gy) functional avoidance radiation therapy. The primary endpoint is feasibility with this achieved if ≥15 out of 20 patients meet pre-defined feasibility criteria. Patients will be followed for 12 months post-treatment with serial imaging, biomarkers, toxicity assessment and quality of life assessment. DISCUSSION: Using advanced techniques such as VMAT functionally adapted radiation therapy may enable safe moderate dose escalation with an aim of improving local control and concurrently decreasing treatment related toxicity. If this technique is proven feasible, it will inform the design of a prospective randomised trial to assess the clinical benefits of functional lung avoidance radiation therapy. ETHICS AND DISSEMINATION: This study was approved by the Peter MacCallum Human Research Ethics Committee. All participants will provide written informed consent. Results will be disseminated via publications. TRIALS REGISTRATION NUMBER: NCT03569072; Pre-results.
  • Item
    No Preview Available
    Safety, Efficacy, and Patterns of Failure After Single-Fraction Stereotactic Body Radiation Therapy (SBRT) for Oligometastases
    Sogono, P ; Bressel, M ; David, S ; Shaw, M ; Chander, S ; Chu, J ; Plumridge, N ; Byrne, K ; Hardcastle, N ; Kron, T ; Wheeler, G ; Hanna, GG ; MacManus, M ; Ball, D ; Siva, S (ELSEVIER SCIENCE INC, 2021-03-01)
    PURPOSE: Fewer attendances for radiation therapy results in increased efficiency and less foot traffic within a radiation therapy department. We investigated outcomes after single-fraction (SF) stereotactic body radiation therapy (SBRT) in patients with oligometastatic disease. METHODS AND MATERIALS: Between February 2010 and June 2019, patients who received SF SBRT to 1 to 5 sites of oligometastatic disease were included in this retrospective study. The primary objective was to describe patterns of first failure after SBRT. Secondary objectives included overall survival (OS), progression-free survival (PFS), high-grade treatment-related toxicity (Common Terminology Criteria for Adverse Events grade ≥3), and freedom from systemic therapy (FFST). RESULTS: In total, 371 patients with 494 extracranial oligometastases received SF SBRT ranging from 16 Gy to 28 Gy. The most common primary malignancies were prostate (n = 107), lung (n = 63), kidney (n = 52), gastrointestinal (n = 51), and breast cancers (n = 42). The median follow-up was 3.1 years. The 1-, 3-, and 5-year OS was 93%, 69%, and 55%, respectively; PFS was 48%, 19%, and 14%, respectively; and FFST was 70%, 43%, and 35%, respectively. Twelve patients (3%) developed grade 3 to 4 treatment-related toxicity, with no grade 5 toxicity. As the first site of failure, the cumulative incidence of local failure (irrespective of other failures) at 1, 3 and 5 years was 4%, 8%, and 8%, respectively; locoregional relapse at the primary was 10%, 18%, and 18%, respectively; and distant failure was 45%, 66%, and 70%, respectively. CONCLUSIONS: SF SBRT is safe and effective, and a significant proportion of patients remain FFST for several years after therapy. This approach could be considered in resource-constrained or bundled-payment environments. Locoregional failure of the primary site is the second most common pattern of failure, suggesting a role for optimization of primary control during metastasis-directed therapy.