Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 24
  • Item
    Thumbnail Image
    Estrogen-induced immune changes within the normal mammary gland
    Tower, H ; Dall, G ; Davey, A ; Stewart, M ; Lanteri, P ; Ruppert, M ; Lambouras, M ; Nasir, I ; Yeow, S ; Darcy, PK ; Ingman, W ; Parker, B ; Haynes, NM ; Britt, KL (NATURE PORTFOLIO, 2022-11-08)
    Breast cancer (BCa) incidence increases following aberrant hormone exposure, which has been linked to direct effects on estrogen receptor (ER)+ mammary epithelium. While estrogen exposure during mammary involution has been shown to drive tumour growth via neutrophils, the potential for the ER + immune microenvironment to mediate part (in addition to mammary epithelial cells) of hormonally controlled BCa risk during normal development has not been assessed. We collected mammary tissue, lymph nodes and blood from tumour naïve mice treated with, oophorectomy, estrogen (17β estradiol) or Fulvestrant. Flow cytometry was used to examine the impact on the frequency of innate and adaptive immune cells. Oophorectomy and fulvestrant decreased the proportion of macrophages, particularly pro-tumour polarized M2 macrophages and neutrophils. Conversely, dendritic cells were increased by these therapies, as were eosinophils. Estrogen increased the proportion of M2 macrophages and to a lesser extent CD4-CD8- double negative and FoxP3+ regulatory T cells but decreased CD8 + T cells and B cells. Excluding eosinophils, these changes were restricted to the mammary tissue. This suggests that inhibiting estrogen action lowers the immune suppressive myeloid cells, increases in antigen presentation and eosinophil-mediated direct or indirect cytotoxic effects. In contrast, estrogen exposure, which drives BCa risk, increases the suppressive myeloid cells and reduces anti-tumour cytotoxic T cells. The impact of hormonal exposure on BCa risk, may in part be linked to its immune modulatory activity.
  • Item
    No Preview Available
    Targeting Protein Tyrosine Phosphatase 22 Does Not Enhance the Efficacy of Chimeric Antigen Receptor T Cells in Solid Tumors
    Du, X ; Darcy, PK ; Wiede, F ; Tiganis, T (AMER SOC MICROBIOLOGY, 2022-03-17)
    Adoptive cell therapy with chimeric antigen receptor (CAR) T cells has revolutionized the treatment of certain B cell malignancies but has been in ineffective against solid tumors. Recent studies have highlighted the potential of targeting negative regulators of T cell signaling to enhance the efficacy and extend the utility of CAR T cells to solid tumors. Autoimmunity-linked protein tyrosine phosphatase N22 (PTPN22) has been proposed as a target for cancer immunotherapy. Here, we have used CRISPR/Cas9 gene editing to generate PTPN22-deficient (Ptpn22Δ/Δ) mice (C57BL/6) and assessed the impact of PTPN22 deficiency on the cytotoxicity and efficacy of CAR T cells in vitro and in vivo. As reported previously, PTPN22 deficiency was accompanied by the promotion of effector T cell responses ex vivo and the repression of syngeneic tumor growth in vivo. However, PTPN22 deficiency did not enhance the cytotoxic activity of murine CAR T cells targeting the extracellular domain of the human oncoprotein HER2 in vitro. Moreover, PTPN22-deficient α-HER2 CAR T cells or ovalbumin-specific OT-I CD8+ T cells adoptively transferred into mice bearing HER2+ mammary tumors or ovalbumin-expressing mammary or colorectal tumors, respectively, were no more effective than their wild-type counterparts in suppressing tumor growth. The deletion of PTPN22 using CRISPR/Cas9 gene editing also did not affect the cytotoxic activity of human CAR T cells targeting the Lewis Y antigen that is expressed by many human solid tumors. Therefore, PTPN22 deficiency does not enhance the antitumor activity of CAR T cells in solid organ malignancies.
  • Item
    Thumbnail Image
    IL-15 Preconditioning Augments CAR T Cell Responses to Checkpoint Blockade for Improved Treatment of Solid Tumors
    Giuffrida, L ; Sek, K ; Henderson, MA ; House, IG ; Lai, J ; Chen, AXY ; Todd, KL ; Petley, E ; Mardiana, S ; Todorovski, I ; Gruber, E ; Kelly, MJ ; Solomon, BJ ; Vervoort, SJ ; Johnstone, RW ; Parish, IA ; Neeson, PJ ; Kats, LM ; Darcy, PK ; Beavis, PA (CELL PRESS, 2020-11-04)
    Chimeric antigen receptor (CAR) T cell therapy has been highly successful in hematological malignancies leading to their US Food and Drug Administration (FDA) approval. However, the efficacy of CAR T cells in solid tumors is limited by tumor-induced immunosuppression, leading to the development of combination approaches, such as adjuvant programmed cell death 1 (PD-1) blockade. Current FDA-approved methods for generating CAR T cells utilize either anti-CD3 and interleukin (IL)-2 or anti-CD3/CD28 beads, which can generate a T cell product with an effector/exhausted phenotype. Whereas different cytokine preconditioning milieu, such as IL-7/IL-15, have been shown to promote T cell engraftment, the impact of this approach on CAR T cell responses to adjuvant immune-checkpoint blockade has not been assessed. In the current study, we reveal that the preconditioning of CAR T cells with IL-7/IL-15 increased CAR T cell responses to anti-PD-1 adjuvant therapy. This was associated with the emergence of an intratumoral CD8+CD62L+TCF7+IRF4- population that was highly responsive to anti-PD-1 therapy and mediated the vast majority of transcriptional and epigenetic changes in vivo following PD-1 blockade. Our data indicate that preservation of CAR T cells in a TCF7+ phenotype is crucial for their responsiveness to adjuvant immunotherapy approaches and should be a key consideration when designing clinical protocols.
  • Item
    Thumbnail Image
    Tumor immune microenvironment of primary prostate cancer with and without germline mutations in homologous recombination repair genes
    Trigos, AS ; Pasam, A ; Banks, P ; Wallace, R ; Guo, C ; Keam, S ; Thorne, H ; Mitchell, C ; Lade, S ; Clouston, D ; Hakansson, A ; Liu, Y ; Blyth, B ; Murphy, D ; Lawrentschuk, N ; Bolton, D ; Moon, D ; Darcy, P ; Haupt, Y ; Williams, SG ; Castro, E ; Olmos, D ; Goode, D ; Neeson, P ; Sandhu, S (BMJ PUBLISHING GROUP, 2022-06)
    BACKGROUND: Aberrations in homologous recombination repair (HRR) genes are emerging as important biomarkers for personalized treatment in prostate cancer (PCa). HRR deficiency (HRD) could affect the tumor immune microenvironment (TIME), potentially contributing to differential responses to poly ADP-ribose polymerase (PARP) inhibitors and immune checkpoint inhibitors. Spatial distribution of immune cells in a range of cancers identifies novel disease subtypes and is related to prognosis. In this study we aimed to determine the differences in the TIME of PCa with and without germline (g) HRR mutations. METHODS: We performed gene expression analysis, multiplex immunohistochemistry of T and B cells and quantitative spatial analysis of PCa samples from 36 patients with gHRD and 26 patients with sporadic PCa. Samples were archival tumor tissue from radical prostatectomies with the exception of one biopsy. Results were validated in several independent cohorts. RESULTS: Although the composition of the T cell and B cells was similar in the tumor areas of gHRD-mutated and sporadic tumors, the spatial profiles differed between these cohorts. We describe two T-cell spatial profiles across primary PCa, a clustered immune spatial (CIS) profile characterized by dense clusters of CD4+ T cells closely interacting with PD-L1+ cells, and a free immune spatial (FIS) profile of CD8+ cells in close proximity to tumor cells. gHRD tumors had a more T-cell inflamed microenvironment than sporadic tumors. The CIS profile was mainly observed in sporadic tumors, whereas a FIS profile was enriched in gHRD tumors. A FIS profile was associated with lower Gleason scores, smaller tumors and longer time to biochemical recurrence and metastasis. CONCLUSIONS: gHRD-mutated tumors have a distinct immune microenvironment compared with sporadic tumors. Spatial profiling of T-cells provides additional information beyond T-cell density and is associated with time to biochemical recurrence, time to metastasis, tumor size and Gleason scores.
  • Item
    Thumbnail Image
    Tissue-specific tumour microenvironments are an emerging determinant of immunotherapy responses
    Oliver, AJ ; Darcy, PK ; Kershaw, MH ; Slaney, CY (AME PUBLISHING COMPANY, 2020-08)
  • Item
    Thumbnail Image
    PTP1B Is an Intracellular Checkpoint that Limits T- cell and CAR T- cell Antitumor Immunity
    Wiede, F ; Lu, K-H ; Du, X ; Zeissig, MN ; Xu, R ; Goh, PK ; Xirouchaki, CE ; Hogarth, SJ ; Greatorex, S ; Sek, K ; Daly, RJ ; Beavis, PA ; Darcy, PK ; Tonks, NK ; Tiganis, T (AMER ASSOC CANCER RESEARCH, 2022-03)
    UNLABELLED: Immunotherapies aimed at alleviating the inhibitory constraints on T cells have revolutionized cancer management. To date, these have focused on the blockade of cell-surface checkpoints such as PD-1. Herein we identify protein tyrosine phosphatase 1B (PTP1B) as an intracellular checkpoint that is upregulated in T cells in tumors. We show that increased PTP1B limits T-cell expansion and cytotoxicity to contribute to tumor growth. T cell-specific PTP1B deletion increased STAT5 signaling, and this enhanced the antigen-induced expansion and cytotoxicity of CD8+ T cells to suppress tumor growth. The pharmacologic inhibition of PTP1B recapitulated the T cell-mediated repression of tumor growth and enhanced the response to PD-1 blockade. Furthermore, the deletion or inhibition of PTP1B enhanced the efficacy of adoptively transferred chimeric antigen receptor (CAR) T cells against solid tumors. Our findings identify PTP1B as an intracellular checkpoint whose inhibition can alleviate the inhibitory constraints on T cells and CAR T cells to combat cancer. SIGNIFICANCE: Tumors subvert antitumor immunity by engaging checkpoints that promote T-cell exhaustion. Here we identify PTP1B as an intracellular checkpoint and therapeutic target. We show that PTP1B is upregulated in intratumoral T cells and that its deletion or inhibition enhances T-cell antitumor activity and increases CAR T-cell effectiveness against solid tumors. This article is highlighted in the In This Issue feature, p. 587.
  • Item
    Thumbnail Image
    Differential location of NKT and MAIT cells within lymphoid tissue
    Johnson, DN ; Ruan, Z ; Petley, E ; Devi, S ; Holz, LE ; Uldrich, AP ; Mak, JYW ; Hor, JL ; Mueller, SN ; McCluskey, J ; Fairlie, DP ; Darcy, PK ; Beavis, PA ; Heath, WR ; Godfrey, D (NATURE PORTFOLIO, 2022-03-08)
    Natural Killer T (NKT) cells and Mucosal-Associated Invariant T (MAIT) cells are innate-like T cells that express semi-invariant αβ T cell receptors (TCRs) through which they recognise CD1d and MR1 molecules, respectively, in complex with specific ligands. These cells play important roles in health and disease in many organs, but their precise intra-organ location is not well established. Here, using CD1d and MR1 tetramer staining techniques, we describe the precise location of NKT and MAIT cells in lymphoid and peripheral organs. Within the thymus, NKT cells were concentrated in the medullary side of the corticomedullary junction. In spleen and lymph nodes, NKT cells were mainly localised within T cell zones, although following in vivo activation with the potent NKT-cell ligand α-GalCer, they expanded throughout the spleen. MAIT cells were clearly detectable in Vα19 TCR transgenic mice and were rare but detectable in lymphoid tissue of non-transgenic mice. In contrast to NKT cells, MAIT cells were more closely associated with the B cell zone and red pulp of the spleen. Accordingly, we have provided an extensive analysis of the in situ localisation of NKT and MAIT cells and suggest differences between the intra-organ location of these two cell types.
  • Item
    Thumbnail Image
    Chimeric Antigen Receptor T cell Therapy and the Immunosuppressive Tumor Microenvironment in Pediatric Sarcoma
    Terry, RL ; Meyran, D ; Fleuren, EDG ; Mayoh, C ; Zhu, J ; Omer, N ; Ziegler, DS ; Haber, M ; Darcy, PK ; Trapani, JA ; Neeson, PJ ; Ekert, PG (MDPI, 2021-09)
    Sarcomas are a diverse group of bone and soft tissue tumors that account for over 10% of childhood cancers. Outcomes are particularly poor for children with refractory, relapsed, or metastatic disease. Chimeric antigen receptor T (CAR T) cells are an exciting form of adoptive cell therapy that potentially offers new hope for these children. In early trials, promising outcomes have been achieved in some pediatric patients with sarcoma. However, many children do not derive benefit despite significant expression of the targeted tumor antigen. The success of CAR T cell therapy in sarcomas and other solid tumors is limited by the immunosuppressive tumor microenvironment (TME). In this review, we provide an update of the CAR T cell therapies that are currently being tested in pediatric sarcoma clinical trials, including those targeting tumors that express HER2, NY-ESO, GD2, EGFR, GPC3, B7-H3, and MAGE-A4. We also outline promising new CAR T cells that are in pre-clinical development. Finally, we discuss strategies that are being used to overcome tumor-mediated immunosuppression in solid tumors; these strategies have the potential to improve clinical outcomes of CAR T cell therapy for children with sarcoma.
  • Item
    Thumbnail Image
    Chimeric antigen receptor T cell therapies for thoracic cancers-challenges and opportunities
    Chan, JD ; Harrison, AJ ; Darcy, PK ; Kershaw, MH ; Slaney, CY (AME PUBL CO, 2020-08)
  • Item
    No Preview Available
    A New Safety Approach Allowing Reversible Control of CAR T Cell Responses
    Chen, AXY ; House, IG ; Beavis, PA ; Darcy, PK (CELL PRESS, 2020-07-08)