Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Chimeric Antigen Receptor T-Cell Therapy in Metastatic Castrate-Resistant Prostate Cancer
    Perera, MPJ ; Thomas, PB ; Risbridger, GP ; Taylor, R ; Azad, A ; Hofman, MS ; Williams, ED ; Vela, I (MDPI, 2022-02)
    Prostate cancer is the most commonly diagnosed solid-organ cancer amongst males worldwide. Metastatic castrate-resistant prostate cancer (mCRPC) is a rapidly fatal end-sequelae of prostate cancer. Therapeutic options for men with mCRPC are limited and are not curative in nature. The recent development of chimeric antigen receptor T-cell (CAR-T) therapy has revolutionised the treatment of treatment-resistant haematological malignancies, and several studies are underway investigating the utility of this technology in the treatment of solid tumours. In this review, we evaluate the current treatment options for men with mCRPC as well as the current landscape of preclinical and clinical trials of CAR-T cell therapy against prostate cancer. We also appraise the various prostate cancer-specific tumour-associated antigens that may be targeted by CAR-T cell technology. Finally, we examine the potential translational barriers of CAR-T cell therapy in solid tumours. Despite preclinical success, preliminary clinical trials in men with prostate cancer have had limited efficacy. Therefore, further clinically translatable preclinical models are required to enhance the understanding of the role of this investigational therapeutic in men with mCRPC. In the era of precision medicine, tailored immunotherapy administered to men in a tumour-agnostic approach provides hope to a group of men who otherwise have few treatment options available.
  • Item
    No Preview Available
    Preclinical Evidence of the Efficacy of Lewis Y Car T Cells in Patient-Derived Models of Prostate Cancer
    Risbridger, GP ; Porter, LH ; Zhu, J ; Byrne, D ; Lister, N ; Azad, A ; Hofman, M ; Vela, I ; Taylor, RA ; Neeson, P ; Darcy, P ; Trapani, J (The Endocrine Society, 2021-05-03)
    Abstract Chimeric antigen receptor T (CAR T) cell therapy is an adoptive immunotherapy that has led to new treatments for lymphoma, leukemia, and other blood cancers; however, its efficacy for prostate cancer remains unproven. Here we report pre-clinical evidence of the efficacy of CAR T cell therapy against the Lewis Y antigen (LeY) using patient-derived models of prostate cancer. To assess the expression of LeY on prostate tumours, we performed immunohistochemistry on a cohort of 41 patient-derived xenografts (PDXs). Cytoplasmic and membrane expression were separately assessed and quantified, for each patient. Overall, 61% (25/41) of PDXs were positive for membrane LeY expression, of which 18 PDXs had greater than 50% membrane-positive cells, and considered most suitable to detection and stable binding by anti-LeY CAR T’s. To determine the in vitro sensitivity to CAR T cytotoxicity, we selected 4 PDXs with high and 2 PDXs with low LeY expression using 3 androgen receptor (AR)-positive adenocarcinomas and 3 AR-negative tumors expressing neuroendocrine markers. Next we established organoids for in vitro co-culture assays where organoids were co-incubated with an equal number of anti-LeY+ CAR T cells or Empty vector control CAR T cells (Ev CAR T). Using time-lapse microscopy we reported destruction of organoids by LeY+ CAR T cells as indicated by their morphological collapse and uptake of propidium iodide from the culture medium; control Ev CAR T cells produced no cytotoxicity. Over the 48h assay, the level of target cell death of the LeY+ organoids was correlated to the intensity LeY surface expression. Target cell death mediated by the CAR T cells required perforin and granzyme B, as potent and highly specific small molecule inhibitors of perforin (SN34960) and granzyme B (C20) applied alone or in combination greatly decreased PI uptake, indicating organoid survival. Neither inhibitor adversely affected CAR T cell viability as measured by PI and Annexin V staining. This demonstrated canonical activation of granule exocytosis pathway by the CAR T cells, leading to organoid cell death. To assess CAR T cell efficacy in vivo, we selected one PDX with high LeY expression. Monotherapy with CAR T cells failed to decrease tumour volume compared to vehicle control. However, CAR T cells given after a single dose of the chemotherapeutic agent carboplatin greatly and durably reduced tumour burden, with residual tumour mass being less than 1% of their original size (0.56 ± 0.23% of tumour volume at the start of treatment). Overall, these data provide preclinical evidence that: i) high membrane expression of LeY correlates with in vitro and in vivo CAR T cell-induced tumour cell death via the canonical perforin/granzyme B mechanism; and, ii) membrane LeY can be used as a biomarker for patient selection.