Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    NOVEL COMBINATION IMMUNOTHERAPY FOR BOOSTING AND PRIMING IMMUNE RESPONSES IN PANCREATIC CANCER: STRONG ANTI-TUMOUR EFFECTS WITH INTERLEUKIN-15 AND CD40 AGONIST TREATMENT
    Van Audenaerde, J ; Marcq, E ; von Scheidt, B ; Davey, A ; Oliver, A ; De Waele, J ; Quatannens, D ; Van Loenhout, J ; Pauwels, P ; Roeyen, G ; Lardon, F ; Slaney, C ; Peeters, M ; Kershaw, M ; Darcy, P ; Smits, E (BMJ PUBLISHING GROUP, 2020-11)
    Background With the poorest 5-year survival of all cancers, improving treatment for pancreatic cancer is one of the biggest challenges in cancer research. In this era of combination immunotherapies, we sought to explore the potential of combining both priming and activation of the immune system. To achieve this, we combined a CD40 agonist with interleukin-15 and tested its potential in pancreatic cancer. Methods Two different mouse models of pancreatic cancer were used to assess the potential of this combination regimen. Therefore, effects on tumour growth kinetics and survival were charted. Differential effects on immune signatures was investigated using RNA sequencing. Functional immune subset involvement was tested using different immune depletion experiments and multicolour flow cytometry in different relevant immune sites. Immune memory was checked using re-challenge experiments. Results We demonstrated profound reduction in tumour growth and increased survival of mice with the majority of mice being cured when both agents were combined, including an unprecedented dose reduction of CD40 agonist without losing any efficacy (fig 1). RNA sequencing analysis showed involvement of natural killer cell and T cell mediated anti-tumour responses and the importance of antigen-presenting cell pathways. This combination resulted in enhanced infiltration of tumours by both cytotoxic T cells and natural killer cells, as well as a striking increase in the ratio of CD8+ T cells over T regulatory cells. We also observed a significant increase in numbers of dendritic cells in tumour draining lymph nodes, particularly CD103+ dendritic cells with cross-presentation potential. A critical role for CD8+ T cells and involvement of natural killer cells in the anti-tumour effect was highlighted. Importantly, strong immune memory was established, with an increase in memory CD8+ T cells only when both interleukin-15 and the CD40 agonist were combined. Abstract 453 Figure 1Tumour kinetics and survival in Panc02 (left) and KPC (right) pancreatic cancer mouse models Conclusions We demonstrated profound synergistic anti-tumour effects upon combination of CD40 agonist and interleukin-15 treatment in mouse models of pancreatic cancer. This preclinical data supports initiation of a first-in-human clinical trial with this combination immunotherapy strategy in pancreatic cancer.
  • Item
    Thumbnail Image
    EARLY-PHENOTYPE LEWIS Y CAR-T CELLS PERSIST BETTER IN VIVO AND INDUCE SOLID TUMOR REGRESSION IN COMBINATION WITH ANTI-PD1
    Meyran, D ; Zhu, J ; Butler, J ; Macdonald, S ; Tantalo, D ; Thio, N ; Sek, K ; Ekert, P ; Kershaw, M ; Trapani, J ; Darcy, P ; Neeson, P (BMJ PUBLISHING GROUP, 2020-11)
    Background Chimeric antigen receptor (CAR-T) cells are a promising new therapy for patients with cancer. However, in contrast to their success in B cell malignancies, CAR-T cells targeting solid cancers have had limited success so far due to their poor proliferation and poor long-term persistence in vivo. To address this issue, we used naïve T cells to generate second-generation CAR-T cells recognizing the tumor antigen Lewis Y (LeY), termed ‘early’ CAR-T cells. Methods Purified naïve T cells were activated by CD3/CD28 soluble tetrameric antibody complex, retrovirally transduced (LeY scFv-CD3z-CD28 CAR) and expanded in IL-7/IL-15. The early LeY CAR-T cell function was tested in vitro for cytotoxicity (Cr-release and degranulation), proliferation, and cytokine secretion by CBA, either de novo or following chronic stimulation for 1 month. Finally, early CAR-T cell persistence and anti-tumor efficacy was assessed in the OVCAR3-NSG model, in the presence or absence of anti-PD-1. Results The early-CAR-T cells comprised stem cell memory-like (CD95+, CD62L+, CD45RA+) and central memory phenotype (CD95+, CD62L+, CD45RA-) T cells with increased expression of ICOS, Ki67, TCF7 and CD27 (Figure 1). The early-CAR-T cells retained potent antigen-specific cytotoxicity, and secreted significantly higher levels of cytokines (IFN-?, TNF-a and IL-2) and increased proliferation compared to conventional CAR-T cells. Importantly, early-CAR-T cells had a significantly higher proliferative capacity after long-term chronic stimulation compared to conventional CAR-T cells (figure 2), and CD4+ CAR-T cells were critical for effective early CD8+ CAR-T cell proliferation capacity in vitro (figure 3). Early CAR-T cells had significantly better in vivo tumor control compared to conventional CAR-T cells (Figure 4), this was associated with increased CAR-T cell persistence. Because chronically stimulated early-LeY-CAR-T cells expressed PD-1 (figure 2), and OVCAR-3 cells expressed PD-L1 when co-cultured with LeY-CAR-T cells (figure 5), we combined early LeY-CAR-T cells with anti-PD-1 therapy and observed complete tumour regression in these mice. Interestingly, early LeY-CAR-T cell plus anti-PD-1 treatment also enhanced the percentage of circulating stem-cell memory like CAR-T cells in vivo (figure 5). Abstract 126 Figure 1Early-CAR-T protocol, including Naïve-T cells purification and expansion in IL-7 and IL-15 promotes the maintenance of a TSCM and TCM phenotype. A) Scheme of the 7-day production protocol for Early-CAR-T cells. B) Phenotype by FACs of the conventional CAR-T cells and the Early-CAR-T cells. Pooled data in triplicate for 6 donors. C) Phenotype by Mass cytometry comparing the Conventional-CAR-T cells vs Early-CAR-T cells vs Early-CD8-CAR-T cells. Data for one donor representative of 3 different donors Abstract 126 Figure 2Early-CAR-T cells are comparable in vitro to conventional CAR-T cells in terms of killing but have a better proliferation capacity that persists after chronic stimulation. The long-term stimulated early- CAR-T cells maintain their memory phenotype and upregulated PD-1. A) Chromium release assay against the LeY+ cell line (OVCAR3), data for one donor representative of 3 other donors. B) Cytokine secretion evaluated by CBA after coculture with the LeY+ cell line (OVCAR3) or with the LeY- cell line (MDA-MB435). C) Division index of CAR-T cells quantified with CTV. D) Evaluation of the differentiation, proliferation and cytotoxicity of the CAR-T cells after chronic stimulation Abstract 126 Figure 3Early-CD4+- CAR-T cells are critical for the proliferation capacity of the Early-CD8+-CAR-T cells. A) Scheme of the CD4-depletion protocol to compare Early-CD8-CAR-T proliferation with or without CD4-T cells. B) Division index of CD4-depleted Early-CAR-T cells, CD8-T cells from bulk Early-CAR-T cells, and from CD4+ T cells from bulk Early-CAR-T-cells quantified with CTV Abstract 126 Figure 4Early-CAR-T cells show in vivo a better persistence and a better proliferation capacity associated with a better tumoral control. A) Design of the in vivo experiment (n=7 mice per group) B) T-cell persistence in peripheral blood was measured by FACS. C) Speakman correlation (Day 13) between Tumor size and% CAR-T- cells. D) Tumor kinetic and Kaplan-Meier analysis of survival of OVCAR-bearing NSG mice treated with Conventional CAR-T cells, or Early-CAR-T cells or Low-dose of Early-CAR-T cells Abstract 126 Figure 5Anti-PD1 treatment enhance the efficacy of the Early-CAR-T cells. A) Upregulation of PD-L1 on OVCAR3 when expanded in the supernatant from co-culture of OVCAR3 with LeY-CAR-T cells. B) Design of the in vivo experiment (n=7 mice per group). C) T-cell persistence, phenotype and anti-human IgG4 in peripheral blood were measured by FACS. D) Tumor kinetic of OVCAR-bearing NSG mice treated with Early-CAR-T cells or Early-CAR-T cells + Nivolumab Conclusions Our early CAR-T cells have better cytokine secretion and proliferation than conventional CAR-T cells. Early CAR-T cells also have superior anti-tumor efficacy in vivo, they have better persistence and maintain the circulating T cell memory pool. Importantly, low dose early-LeY-CAR-T cells combined with anti-PD1-treatment leads to complete clearance of LeY+ solid tumors in vivo. The early CAR-T cell production protocol is directly translatable for improving CAR-T cell efficacy in clinical trials for patients with solid tumors.