Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    Preclinical screening of histone deacetylase inhibitors combined with ABT-737, rhTRAIL/MD5-1 or 5-azacytidine using syngeneic Vk*MYC multiple myeloma
    Matthews, GM ; Lefebure, M ; Doyle, MA ; Shortt, J ; Ellul, J ; Chesi, M ; Banks, K-M ; Vidacs, E ; Faulkner, D ; Atadja, P ; Bergsagel, PL ; Johnstone, RW (NATURE PUBLISHING GROUP, 2013-09)
    Multiple myeloma (MM) is an incurable malignancy with an unmet need for innovative treatment options. Histone deacetylase inhibitors (HDACi) are a new class of anticancer agent that have demonstrated activity in hematological malignancies. Here, we investigated the efficacy and safety of HDACi (vorinostat, panobinostat, romidepsin) and novel combination therapies using in vitro human MM cell lines and in vivo preclinical screening utilizing syngeneic transplanted Vk*MYC MM. HDACi were combined with ABT-737, which targets the intrinsic apoptosis pathway, recombinant human tumour necrosis factor-related apoptosis-inducing ligand (rhTRAIL/MD5-1), that activates the extrinsic apoptosis pathway or the DNA methyl transferase inhibitor 5-azacytidine. We demonstrate that in vitro cell line-based studies provide some insight into drug activity and combination therapies that synergistically kill MM cells; however, they do not always predict in vivo preclinical efficacy or toxicity. Importantly, utilizing transplanted Vk*MYC MM, we report that panobinostat and 5-azacytidine synergize to prolong the survival of tumor-bearing mice. In contrast, combined HDACi/rhTRAIL-based strategies, while efficacious, demonstrated on-target dose-limiting toxicities that precluded prolonged treatment. Taken together, our studies provide evidence that the transplanted Vk*MYC model of MM is a useful screening tool for anti-MM drugs and should aid in the prioritization of novel drug testing in the clinic.
  • Item
    Thumbnail Image
    FISH Detection of PML-RARA Fusion in ins(15;17) Acute Promyelocytic Leukaemia Depends on Probe Size
    Campbell, LJ ; Oei, P ; Brookwell, R ; Shortt, J ; Eaddy, N ; Ng, A ; Chew, E ; Browett, P (HINDAWI LTD, 2013)
    The diagnosis of acute promyelocytic leukaemia (APL) is usually confirmed by cytogenetics showing the characteristic t(15;17), but a minority of patients have a masked PML/RARA fusion. We report ten patients with APL and no evidence of the t(15;17), in whom the insertion of RARA into PML could not be demonstrated by initial FISH studies using a standard dual fusion probe but was readily identified using smaller probes. Given the need for rapid diagnosis of APL, it is important to be aware of the false negative rate for large PML/RARA FISH probes in the setting of masked rearrangements.
  • Item
    Thumbnail Image
    AKT signalling is required for ribosomal RNA synthesis and progression of Eμ-Myc B-cell lymphoma in vivo
    Devlin, JR ; Hannan, KM ; Ng, PY ; Bywater, MJ ; Shortt, J ; Cullinane, C ; McArthur, GA ; Johnstone, RW ; Hannan, RD ; Pearson, RB (WILEY-BLACKWELL, 2013-11)
    The dysregulation of PI3K/AKT/mTORC1 signalling and/or hyperactivation of MYC are observed in a high proportion of human cancers, and together they form a 'super signalling' network mediating malignancy. A fundamental downstream action of this signalling network is up-regulation of ribosome biogenesis and subsequent alterations in the patterns of translation and increased protein synthesis, which are thought to be critical for AKT/MYC-driven oncogenesis. We have demonstrated that AKT and MYC cooperate to drive ribosomal DNA (rDNA) transcription and ribosome biogenesis, with AKT being essential for rDNA transcription and in vitro survival of lymphoma cells isolated from a MYC-driven model of B-cell lymphoma (Eμ-Myc) [Chan JC et al., (2011) Science Signalling 4, ra56]. Here we show that the allosteric AKT inhibitor MK-2206 rapidly and potently antagonizes rDNA transcription in Eμ-Myc B-cell lymphomas in vivo, and this is associated with a rapid reduction in indicators of disease burden, including spleen weight and the abundance of tumour cells in both the circulation and lymph nodes. Extended treatment of tumour-bearing mice with MK-2206 resulted in a significant delay in disease progression, associated with increased B-cell lymphoma apoptosis. Our findings suggest that malignant diseases characterized by unrestrained ribosome biogenesis may be vulnerable to therapeutic strategies that target the PI3K/AKT/mTORC1/MYC growth control network.
  • Item
    No Preview Available
    Loss of PML cooperates with mutant p53 to drive more aggressive cancers in a gender-dependent manner
    Haupt, S ; Mitchell, C ; Corneille, V ; Shortt, J ; Fox, S ; Pandolfi, PP ; Castillo-Martin, M ; Bonal, DM ; Cordon-Cardo, C ; Lozano, G ; Haupt, Y (TAYLOR & FRANCIS INC, 2013-06-01)
    UNLABELLED: p53 mutations and downregulation of promyelocytic leukemia (PML) are common genetic alterations in human cancers. In healthy cells these two key tumor suppressors exist in a positive regulatory loop, promoting cell death and cellular senescence. However, the influence of their interplay on tumorigenesis has not been explored directly in vivo. The contribution of PML to mutant p53 driven cancer was evaluated in a mouse model harboring a p53 mutation (p53 (wild-type/R172H) ) that recapitulates a frequent p53 mutation (p53 (R175H) ) in human sporadic and Li-Fraumeni cancers. These mice with PML displayed perturbation of the hematopoietic compartment, manifested either as lymphoma or extramedullary hematopoiesis (EMH). EMH was associated with peripheral blood leucocytosis and macrocytic anemia, suggestive of myeloproliferative- myelodysplastic overlap. In contrast, a complete loss of PML from these mice resulted in a marked alteration in tumor profile. While the incidence of lymphomas was unaltered, EMH was not detected and the majority of mice succumbed to sarcomas. Further, males lacking PML exhibited a high incidence of soft tissue sarcomas and reduced survival, while females largely developed osteosarcomas, without impact on survival. Together, these findings demonstrate that PML is an important tumor suppressor dictating disease development in a pertinent mouse model of human cancer.   KEY POINTS: (1) A mutant p53 allele disrupts hematopoiesis in mice, by promoting lymphomas and myeloproliferative / myelodysplastic overlap. (2) Coincidental p53 allele mutation and PML loss shifts the tumor profile toward sarcoma formation, which is paralleled in human leiomyosarcomas (indicated by immunohistochemistry; IHC).
  • Item
    Thumbnail Image
    Combined inhibition of PI3K-related DNA damage response kinases and mTORC1 induces apoptosis in MYC-driven B-cell lymphomas
    Shortt, J ; Martin, BP ; Newbold, A ; Hannan, KM ; Devlin, JR ; Baker, AJ ; Ralli, R ; Cullinane, C ; Schmitt, CA ; Reimann, M ; Hall, MN ; Wall, M ; Hannan, RD ; Pearson, RB ; McArthur, GA ; Johnstone, RW (AMER SOC HEMATOLOGY, 2013-04-11)
    Pharmacological strategies capable of directly targeting MYC are elusive. Previous studies have shown that MYC-driven lymphomagenesis is associated with mammalian target of rapamycin (mTOR) activation and a MYC-evoked DNA damage response (DDR) transduced by phosphatidylinositol-3-kinase (PI3K)-related kinases (DNA-PK, ATM, and ATR). Here we report that BEZ235, a multitargeted pan-PI3K/dual-mTOR inhibitor, potently killed primary Myc-driven B-cell lymphomas and human cell lines bearing IG-cMYC translocations. Using pharmacologic and genetic dissection of PI3K/mTOR signaling, dual DDR/mTORC1 inhibition was identified as a key mediator of apoptosis. Moreover, apoptosis was initiated at drug concentrations insufficient to antagonize PI3K/mTORC2-regulated AKT phosphorylation. p53-independent induction of the proapoptotic BH3-only protein BMF was identified as a mechanism by which dual DDR/mTORC1 inhibition caused lymphoma cell death. BEZ235 treatment induced apoptotic tumor regressions in vivo that correlated with suppression of mTORC1-regulated substrates and reduced H2AX phosphorylation and also with feedback phosphorylation of AKT. These mechanistic studies hold important implications for the use of multitargeted PI3K inhibitors in the treatment of hematologic malignancies. In particular, the newly elucidated role of PI3K-related DDR kinases in response to PI3K inhibitors offers a novel therapeutic opportunity for the treatment of hematologic malignancies with an MYC-driven DDR.