Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 24
  • Item
    Thumbnail Image
    Small-scale mutations are infrequent as mechanisms of resistance in post-PARP inhibitor tumour samples in high grade serous ovarian cancer
    Burdett, NL ; Willis, MO ; Pandey, A ; Fereday, S ; DeFazio, A ; Bowtell, DDL ; Christie, EL (NATURE PORTFOLIO, 2023-12-10)
    While the introduction of poly-(ADP)-ribose polymerase (PARP) inhibitors in homologous recombination DNA repair (HR) deficient high grade serous ovarian, fallopian tube and primary peritoneal cancers (HGSC) has improved patient survival, resistance to PARP inhibitors frequently occurs. Preclinical and translational studies have identified multiple mechanisms of resistance; here we examined tumour samples collected from 26 women following treatment with PARP inhibitors as part of standard of care or their enrolment in clinical trials. Twenty-one had a germline or somatic BRCA1/2 mutation. We performed targeted sequencing of 63 genes involved in DNA repair processes or implicated in ovarian cancer resistance. We found that just three individuals had a small-scale mutation as a definitive resistance mechanism detected, having reversion mutations, while six had potential mechanisms of resistance detected, with alterations related to BRCA1 function and mutations in SHLD2. This study indicates that mutations in genes related to DNA repair are detected in a minority of HGSC patients as genetic mechanisms of resistance. Future research into resistance in HGSC should focus on copy number, transcriptional and epigenetic aberrations, and the contribution of the tumour microenvironment.
  • Item
    No Preview Available
    Multiomic analysis of homologous recombination-deficient end-stage high-grade serous ovarian cancer
    Burdett, NL ; Willis, MO ; Alsop, K ; Hunt, AL ; Pandey, A ; Hamilton, PT ; Abulez, T ; Liu, X ; Hoang, T ; Craig, S ; Fereday, S ; Hendley, J ; Garsed, DW ; Milne, K ; Kalaria, S ; Marshall, A ; Hood, BL ; Wilson, KN ; Conrads, KA ; Pishas, K ; Ananda, S ; Scott, CL ; Antill, Y ; McNally, O ; Mileshkin, L ; Hamilton, A ; Au-Yeung, G ; Devereux, L ; Thorne, H ; Bild, A ; Bateman, NW ; Maxwell, GL ; Chang, JT ; Conrads, TPP ; Nelson, BH ; Bowtell, DDL ; Christie, ELL (NATURE PORTFOLIO, 2023-03)
    High-grade serous ovarian cancer (HGSC) is frequently characterized by homologous recombination (HR) DNA repair deficiency and, while most such tumors are sensitive to initial treatment, acquired resistance is common. We undertook a multiomics approach to interrogate molecular diversity in end-stage disease, using multiple autopsy samples collected from 15 women with HR-deficient HGSC. Patients had polyclonal disease, and several resistance mechanisms were identified within most patients, including reversion mutations and HR restoration by other means. We also observed frequent whole-genome duplication and global changes in immune composition with evidence of immune escape. This analysis highlights diverse evolutionary changes within HGSC that evade therapy and ultimately overwhelm individual patients.
  • Item
    Thumbnail Image
    The genomic and immune landscape of long-term survivors of high-grade serous ovarian cancer
    Garsed, DW ; Pandey, A ; Fereday, S ; Kennedy, CJ ; Takahashi, K ; Alsop, K ; Hamilton, PT ; Hendley, J ; Chiew, Y-E ; Traficante, N ; Provan, P ; Ariyaratne, D ; Au-Yeung, G ; Bateman, NW ; Bowes, L ; Brand, A ; Christie, EL ; Cunningham, JM ; Friedlander, M ; Grout, B ; Harnett, P ; Hung, J ; McCauley, B ; McNally, O ; Piskorz, AM ; Saner, FAM ; Vierkant, RA ; Wang, C ; Winham, SJ ; Pharoah, PDP ; Brenton, JD ; Conrads, TP ; Maxwell, GL ; Ramus, SJ ; Pearce, CL ; Pike, MC ; Nelson, BH ; Goode, EL ; DeFazio, A ; Bowtell, DDL (NATURE PORTFOLIO, 2022-12)
    Fewer than half of all patients with advanced-stage high-grade serous ovarian cancers (HGSCs) survive more than five years after diagnosis, but those who have an exceptionally long survival could provide insights into tumor biology and therapeutic approaches. We analyzed 60 patients with advanced-stage HGSC who survived more than 10 years after diagnosis using whole-genome sequencing, transcriptome and methylome profiling of their primary tumor samples, comparing this data to 66 short- or moderate-term survivors. Tumors of long-term survivors were more likely to have multiple alterations in genes associated with DNA repair and more frequent somatic variants resulting in an increased predicted neoantigen load. Patients clustered into survival groups based on genomic and immune cell signatures, including three subsets of patients with BRCA1 alterations with distinctly different outcomes. Specific combinations of germline and somatic gene alterations, tumor cell phenotypes and differential immune responses appear to contribute to long-term survival in HGSC.
  • Item
    No Preview Available
    Evolution of core archetypal phenotypes in progressive high grade serous ovarian cancer
    Nath, A ; Cosgrove, PA ; Mirsafian, H ; Christie, EL ; Pflieger, L ; Copeland, B ; Majumdar, S ; Cristea, MC ; Han, ES ; Lee, SJ ; Wang, EW ; Fereday, S ; Traficante, N ; Salgia, R ; Werner, T ; Cohen, AL ; Moos, P ; Chang, JT ; Bowtell, DDL ; Bild, AH (NATURE PORTFOLIO, 2021-05-24)
    The evolution of resistance in high-grade serous ovarian cancer (HGSOC) cells following chemotherapy is only partially understood. To understand the selection of factors driving heterogeneity before and through adaptation to treatment, we profile single-cell RNA-sequencing (scRNA-seq) transcriptomes of HGSOC tumors collected longitudinally during therapy. We analyze scRNA-seq data from two independent patient cohorts to reveal that HGSOC is driven by three archetypal phenotypes, defined as oncogenic states that describe the majority of the transcriptome variation. Using a multi-task learning approach to identify the biological tasks of each archetype, we identify metabolism and proliferation, cellular defense response, and DNA repair signaling as consistent cell states found across patients. Our analysis demonstrates a shift in favor of the metabolism and proliferation archetype versus cellular defense response archetype in cancer cells that received multiple lines of treatment. While archetypes are not consistently associated with specific whole-genome driver mutations, they are closely associated with subclonal populations at the single-cell level, indicating that subclones within a tumor often specialize in unique biological tasks. Our study reveals the core archetypes found in progressive HGSOC and shows consistent enrichment of subclones with the metabolism and proliferation archetype as resistance is acquired to multiple lines of therapy.
  • Item
    Thumbnail Image
    TRACEBACK: Testing of Historical Tubo-Ovarian Cancer Patients for Hereditary Risk Genes as a Cancer Prevention Strategy in Family Members
    Delahunty, R ; Nguyen, L ; Craig, S ; Creighton, B ; Ariyaratne, D ; Garsed, DW ; Christie, E ; Fereday, S ; Andrews, L ; Lewis, A ; Limb, S ; Pandey, A ; Hendley, J ; Traficante, N ; Carvajal, N ; Spurdle, AB ; Thompson, B ; Parsons, MT ; Beshay, V ; Volcheck, M ; Semple, T ; Lupat, R ; Doig, K ; Yu, J ; Chen, XQ ; Marsh, A ; Love, C ; Bilic, S ; Beilin, M ; Nichols, CB ; Greer, C ; Lee, YC ; Gerty, S ; Gill, L ; Newton, E ; Howard, J ; Williams, R ; Norris, C ; Stephens, AN ; Tutty, E ; Smyth, C ; O'Connell, S ; Jobling, T ; Stewart, CJR ; Tan, A ; Fox, SB ; Pachter, N ; Li, J ; Ellul, J ; Mir Arnau, G ; Young, M-A ; Gordon, L ; Forrest, L ; Harris, M ; Livingstone, K ; Hill, J ; Chenevix-Trench, G ; Cohen, PA ; Webb, PM ; Friedlander, M ; James, P ; Bowtell, D ; Alsop, K (LIPPINCOTT WILLIAMS & WILKINS, 2022-06-20)
    PURPOSE: Tubo-ovarian cancer (TOC) is a sentinel cancer for BRCA1 and BRCA2 pathogenic variants (PVs). Identification of a PV in the first member of a family at increased genetic risk (the proband) provides opportunities for cancer prevention in other at-risk family members. Although Australian testing rates are now high, PVs in patients with TOC whose diagnosis predated revised testing guidelines might have been missed. We assessed the feasibility of detecting PVs in this population to enable genetic risk reduction in relatives. PATIENTS AND METHODS: In this pilot study, deceased probands were ascertained from research cohort studies, identification by a relative, and gynecologic oncology clinics. DNA was extracted from archival tissue or stored blood for panel sequencing of 10 risk-associated genes. Testing of deceased probands ascertained through clinic records was performed with a consent waiver. RESULTS: We identified 85 PVs in 84 of 787 (11%) probands. Familial contacts of 39 of 60 (65%) deceased probands with an identified recipient (60 of 84; 71%) have received a written notification of results, with follow-up verbal contact made in 85% (33 of 39). A minority of families (n = 4) were already aware of the PV. For many (29 of 33; 88%), the genetic result provided new information and referral to a genetic service was accepted in most cases (66%; 19 of 29). Those who declined referral (4 of 29) were all male next of kin whose family member had died more than 10 years before. CONCLUSION: We overcame ethical and logistic challenges to demonstrate that retrospective genetic testing to identify PVs in previously untested deceased probands with TOC is feasible. Understanding reasons for a family member's decision to accept or decline a referral will be important for guiding future TRACEBACK projects.
  • Item
    Thumbnail Image
    Phenotypic Consequences of SLC25A40-ABCB1 Fusions beyond Drug Resistance in High-Grade Serous Ovarian Cancer
    Pishas, K ; Cowley, KJ ; Pandey, A ; Hoang, T ; Beach, JA ; Luu, J ; Vary, R ; Smith, LK ; Shembrey, CE ; Rashoo, N ; White, MO ; Simpson, KJ ; Bild, A ; Griffiths, J ; Cheasley, D ; Campbell, I ; Bowtell, DDL ; Christie, EL (MDPI, 2021-11)
    Despite high response rates to initial chemotherapy, the majority of women diagnosed with High-Grade Serous Ovarian Cancer (HGSOC) ultimately develop drug resistance within 1-2 years of treatment. We previously identified the most common mechanism of acquired resistance in HGSOC to date, transcriptional fusions involving the ATP-binding cassette (ABC) transporter ABCB1, which has well established roles in multidrug resistance. However, the underlying biology of fusion-positive cells, as well as how clonal interactions between fusion-negative and positive populations influences proliferative fitness and therapeutic response remains unknown. Using a panel of fusion-negative and positive HGSOC single-cell clones, we demonstrate that in addition to mediating drug resistance, ABCB1 fusion-positive cells display impaired proliferative capacity, elevated oxidative metabolism, altered actin cellular morphology and an extracellular matrix/inflammatory enriched transcriptional profile. The co-culture of fusion-negative and positive populations had no effect on cellular proliferation but markedly altered drug sensitivity to doxorubicin, paclitaxel and cisplatin. Finally, high-throughput screening of 2907 FDA-approved compounds revealed 36 agents that induce equal cytotoxicity in both pure and mixed ABCB1 fusion populations. Collectively, our findings have unraveled the underlying biology of ABCB1 fusion-positive cells beyond drug resistance and identified novel therapeutic agents that may significantly improve the prognosis of relapsed HGSOC patients.
  • Item
    Thumbnail Image
    Evolution of core archetypal phenotypes in progressive high grade serous ovarian cancer.
    Nath, A ; Cosgrove, P ; Copeland, B ; Mirsafian, H ; Christie, E ; Pflieger, L ; Majumdar, S ; Cristea, M ; Han, E ; Lee, S ; Wang, E ; Fereday, S ; Traficante, N ; Salgia, R ; Werner, T ; Cohen, A ; Moos, P ; Chang, J ; Bowtell, D ; Bild, A (AMER ASSOC CANCER RESEARCH, 2021-07-01)
    Abstract The evolution of resistance in high-grade serous ovarian cancer (HGSOC) cells following chemotherapy is only partially understood. To uncover phenotypic changes associated with chemotherapy resistance, we profiled single-cell RNA-sequencing (scRNA-seq) transcriptomes of HGSOC tumors collected longitudinally during patient treatment. Analysis of scRNA-seq data from two independent patient cohorts revealed that HGSOC is driven by three core archetypal phenotypes, defined as oncogenic tasks that describe the majority of the transcriptome variation. A multi-task learning approach to identify the biological tasks of each archetype identified metabolism and proliferation, cellular defense response, and DNA repair signaling. The metabolism and proliferation archetype evolved during treatment and was enriched in cancer cells from patients that received multiple-lines of treatment and had elevated tumor burden indicated by CA-125 levels. The emergence of archetypes was not consistently associated with specific whole-genome driver mutations. However, archetypes were closely associated with subclonal populations at the single-cell level, indicating that subclones within a tumor often specialize in unique biological tasks. Our study reveals the core archetypes found in progressive HGSOC and shows consistent enrichment of subclones with the metabolism archetype as resistance is acquired to multiple lines of therapy. Citation Format: Aritro Nath, Patrick Cosgrove, Benjamin Copeland, Hoda Mirsafian, Elizabeth Christie, Lance Pflieger, Sumana Majumdar, Mihaela Cristea, Ernest Han, Stephen Lee, Edward Wang, Sian Fereday, Nadia Traficante, Ravi Salgia, Theresa Werner, Adam Cohen, Phillip Moos, Jeffrey Chang, David Bowtell, Andrea Bild. Evolution of core archetypal phenotypes in progressive high grade serous ovarian cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 3141.
  • Item
    Thumbnail Image
    Characterizing genetic intra-tumor heterogeneity across 2,658 human cancer genomes
    Dentro, SC ; Leshchiner, I ; Haase, K ; Tarabichi, M ; Wintersinger, J ; Deshwar, AG ; Yu, K ; Rubanova, Y ; Macintyre, G ; Demeulemeester, J ; Vazquez-Garcia, I ; Kleinheinz, K ; Livitz, DG ; Malikic, S ; Donmez, N ; Sengupta, S ; Anur, P ; Jolly, C ; Cmero, M ; Rosebrock, D ; Schumacher, SE ; Fan, Y ; Fittall, M ; Drews, RM ; Yao, X ; Watkins, TBK ; Lee, J ; Schlesner, M ; Zhu, H ; Adams, DJ ; McGranahan, N ; Swanton, C ; Getz, G ; Boutros, PC ; Imielinski, M ; Beroukhim, R ; Sahinalp, SC ; Ji, Y ; Peifer, M ; Martincorena, I ; Markowetz, F ; Mustonen, V ; Yuan, K ; Gerstung, M ; Spellman, PT ; Wang, W ; Morris, QD ; Wedge, DC ; Van Loo, P (CELL PRESS, 2021-04-15)
    Intra-tumor heterogeneity (ITH) is a mechanism of therapeutic resistance and therefore an important clinical challenge. However, the extent, origin, and drivers of ITH across cancer types are poorly understood. To address this, we extensively characterize ITH across whole-genome sequences of 2,658 cancer samples spanning 38 cancer types. Nearly all informative samples (95.1%) contain evidence of distinct subclonal expansions with frequent branching relationships between subclones. We observe positive selection of subclonal driver mutations across most cancer types and identify cancer type-specific subclonal patterns of driver gene mutations, fusions, structural variants, and copy number alterations as well as dynamic changes in mutational processes between subclonal expansions. Our results underline the importance of ITH and its drivers in tumor evolution and provide a pan-cancer resource of comprehensively annotated subclonal events from whole-genome sequencing data.
  • Item
    Thumbnail Image
    Chemotherapy weakly contributes to predicted neoantigen expression in ovarian cancer
    O'Donnell, T ; Christie, EL ; Ahuja, A ; Buros, J ; Aksoy, BA ; Bowtell, DDL ; Snyder, A ; Hammerbacher, J (BMC, 2018-01-22)
    BACKGROUND: Patients with highly mutated tumors, such as melanoma or smoking-related lung cancer, have higher rates of response to immune checkpoint blockade therapy, perhaps due to increased neoantigen expression. Many chemotherapies including platinum compounds are known to be mutagenic, but the impact of standard treatment protocols on mutational burden and resulting neoantigen expression in most human cancers is unknown. METHODS: We sought to quantify the effect of chemotherapy treatment on computationally predicted neoantigen expression for high grade serous ovarian carcinoma patients enrolled in the Australian Ovarian Cancer Study. In this series, 35 of 114 samples were collected after exposure to chemotherapy; 14 are matched with an untreated sample from the same patient. Our approach integrates whole genome and RNA sequencing of bulk tumor samples with class I MHC binding prediction and mutational signatures extracted from studies of chemotherapy-exposed Caenorhabditis elegans and Gallus gallus cells. We additionally investigated the relationship between neoantigens, tumor infiltrating immune cells estimated from RNA-seq with CIBERSORT, and patient survival. RESULTS: Greater neoantigen burden and CD8+ T cell infiltration in primary, pre-treatment samples were independently associated with improved survival. Relapse samples collected after chemotherapy harbored a median of 78% more expressed neoantigens than untreated primary samples, a figure that combines the effects of chemotherapy and other processes operative during relapse. The contribution from chemotherapy-associated signatures was small, accounting for a mean of 5% (range 0-16) of the expressed neoantigen burden in relapse samples. In both treated and untreated samples, most neoantigens were attributed to COSMIC Signature (3), associated with BRCA disruption, Signature (1), associated with a slow mutagenic process active in healthy tissue, and Signature (8), of unknown etiology. CONCLUSION: Relapsed ovarian cancers harbor more predicted neoantigens than primary tumors, but the increase is due to pre-existing mutational processes, not mutagenesis from chemotherapy.
  • Item
    Thumbnail Image
    Ovarian Carcinoma-Associated Mesenchymal Stem Cells Arise from Tissue-Specific Normal Stroma
    Coffman, LG ; Pearson, AT ; Frisbie, LG ; Freeman, Z ; Christie, E ; Bowtell, DD ; Buckanovich, RJ (WILEY, 2019-02)
    Carcinoma-associated mesenchymal stem cells (CA-MSCs) are critical stromal progenitor cells within the tumor microenvironment (TME). We previously demonstrated that CA-MSCs differentially express bone morphogenetic protein family members, promote tumor cell growth, increase cancer "stemness," and chemotherapy resistance. Here, we use RNA sequencing of normal omental MSCs and ovarian CA-MSCs to demonstrate global changes in CA-MSC gene expression. Using these expression profiles, we create a unique predictive algorithm to classify CA-MSCs. Our classifier accurately distinguishes normal omental, ovary, and bone marrow MSCs from ovarian cancer CA-MSCs. Suggesting broad applicability, the model correctly classifies pancreatic and endometrial cancer CA-MSCs and distinguishes cancer associated fibroblasts from CA-MSCs. Using this classifier, we definitively demonstrate ovarian CA-MSCs arise from tumor mediated reprograming of local tissue MSCs. Although cancer cells alone cannot induce a CA-MSC phenotype, the in vivo ovarian TME can reprogram omental or ovary MSCs to protumorigenic CA-MSCs (classifier score of >0.96). In vitro studies suggest that both tumor secreted factors and hypoxia are critical to induce the CA-MSC phenotype. Interestingly, although the breast cancer TME can reprogram bone marrow MSCs into CA-MSCs, the ovarian TME cannot, demonstrating for the first time that tumor mediated CA-MSC conversion is tissue and cancer type dependent. Together these findings (a) provide a critical tool to define CA-MSCs and (b) highlight cancer cell influence on distinct normal tissues providing powerful insights into the mechanisms underlying cancer specific metastatic niche formation. Stem Cells 2019;37:257-269.