Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 14
  • Item
    Thumbnail Image
    Importance of quality in radiation oncology
    Foroudi, F ; Kron, T (WILEY, 2017-10)
  • Item
    Thumbnail Image
    Stereotactic ablative body radiotherapy for inoperable primary kidney cancer: a prospective clinical trial
    Siva, S ; Pham, D ; Kron, T ; Bressel, M ; Lam, J ; Tan, TH ; Chesson, B ; Shaw, M ; Chander, S ; Gill, S ; Brook, NR ; Lawrentschuk, N ; Murphy, DG ; Foroudi, F (WILEY, 2017-11)
    OBJECTIVE: To assess the feasibility and safety of stereotactic ablative body radiotherapy (SABR) for renal cell carcinoma (RCC) in patients unsuitable for surgery. Secondary objectives were to assess oncological and functional outcomes. MATERIALS AND METHODS: This was a prospective interventional clinical trial with institutional ethics board approval. Inoperable patients were enrolled, after multidisciplinary consensus, for intervention with informed consent. Tumour response was defined using Response Evaluation Criteria In Solid Tumors v1.1. Toxicities were recorded using Common Terminology Criteria for Adverse Events v4.0. Time-to-event outcomes were described using the Kaplan-Meier method, and associations of baseline variables with tumour shrinkage was assessed using linear regression. Patients received either single fraction of 26 Gy or three fractions of 14 Gy, dependent on tumour size. RESULTS: Of 37 patients (median age 78 years), 62% had T1b, 35% had T1a and 3% had T2a disease. One patient presented with bilateral primaries. Histology was confirmed in 92%. In total, 33 patients and 34 kidneys received all prescribed SABR fractions (89% feasibility). The median follow-up was 24 months. Treatment-related grade 1-2 toxicities occurred in 26 patients (78%) and grade 3 toxicity in one patient (3%). No grade 4-5 toxicities were recorded and six patients (18%) reported no toxicity. Freedom from local progression, distant progression and overall survival rates at 2 years were 100%, 89% and 92%, respectively. The mean baseline glomerular filtration rate was 55 mL/min, which decreased to 44 mL/min at 1 and 2 years (P < 0.001). Neutrophil:lymphocyte ratio correlated to % change in tumour size at 1 year, r2 = 0.45 (P < 0.001). CONCLUSION: The study results show that SABR for primary RCC was feasible and well tolerated. We observed encouraging cancer control, functional preservation and early survival outcomes in an inoperable cohort. Baseline neutrophil:lymphocyte ratio may be predictive of immune-mediated response and warrants further investigation.
  • Item
    Thumbnail Image
    A retrospective review of the long-term outcomes of online adaptive radiation therapy and conventional radiation therapy for muscle invasive bladder cancer
    Yeh, J ; Bressel, M ; Tai, KH ; Kron, T ; Foroudi, F (ELSEVIER IRELAND LTD, 2021-09)
    BACKGROUND AND PURPOSE: To report long-term outcomes of online image-guided (IG) adaptive radiation therapy (aRT) versus conventional IG radiation therapy (cRT) for bladder preservation in muscle-invasive bladder cancer (MIBC). MATERIALS AND METHODS: A retrospective review of patients with histologically proven MIBC who were prescribed radical intent radiation therapy (RT) following trans-urethral resection of bladder tumour (TURBT) was conducted. There were three groups based on their RT treatment modality: conventional RT (cRT), margin 5 mm adaptive RT (aRT5mm) and margin 7 mm adaptive RT (aRT7mm). RESULTS: 171 patients were included in this study, with median age of 79.4 years (41-90). Approximately half of all patients received concurrent chemotherapy. N = 57 underwent cRT, n = 39 underwent aRT5mm, and n = 75 underwent aRT7mm. Response evaluable patients in all three groups (n = 133) had high rates of complete response (CR, 83%) on first post-RT cystoscopy with no significant differences between the groups. At a median follow-up of 54 months, the 5-year freedom from muscle-invasive failure survival (FFMIFS) in the cRT, aRT5mm, and aRT7mm groups were 75%, 59%, and 98%, respectively. The estimated cancer specific survival (CSS) at 5 years were 60%, 30%, and 59%, respectively. The estimated overall survival (OS) at 5 years were 43%, 26%, and 38%, respectively. The incidence of late grade 3 or 4 toxicity was n = 5 in aRT5mm, n = 2 in cRT group, and n = 1 in aRT7mm. CONCLUSION: IG aRT with 7 mm expansion for MIBC provides higher rates of FFMIFS, similar 5-year CSS and OS, as well as toxicity outcomes when compared to cRT. aRT with 5 mm expansion with this RT protocol is not recommended for treatment.
  • Item
    Thumbnail Image
    Personalising treatment plan quality review with knowledge-based planning in the TROG 15.03 trial for stereotactic ablative body radiotherapy in primary kidney cancer
    Hardcastle, N ; Cook, O ; Ray, X ; Moore, A ; Moore, KL ; Pryor, D ; Rossi, A ; Foroudi, F ; Kron, T ; Siva, S (BMC, 2021-08-03)
    INTRODUCTION: Quality assurance (QA) of treatment plans in clinical trials improves protocol compliance and patient outcomes. Retrospective use of knowledge-based-planning (KBP) in clinical trials has demonstrated improved treatment plan quality and consistency. We report the results of prospective use of KBP for real-time QA of treatment plan quality in the TROG 15.03 FASTRACK II trial, which evaluates efficacy of stereotactic ablative body radiotherapy (SABR) for kidney cancer. METHODS: A KBP model was generated based on single institution data. For each patient in the KBP phase (open to the last 31 patients in the trial), the treating centre submitted treatment plans 7 days prior to treatment. A treatment plan was created by using the KBP model, which was compared with the submitted plan for each organ-at-risk (OAR) dose constraint. A report comparing each plan for each OAR constraint was provided to the submitting centre within 24 h of receiving the plan. The centre could then modify the plan based on the KBP report, or continue with the existing plan. RESULTS: Real-time feedback using KBP was provided in 24/31 cases. Consistent plan quality was in general achieved between KBP and the submitted plan. KBP review resulted in replan and improvement of OAR dosimetry in two patients. All centres indicated that the feedback was a useful QA check of their treatment plan. CONCLUSION: KBP for real-time treatment plan review was feasible for 24/31 cases, and demonstrated ability to improve treatment plan quality in two cases. Challenges include integration of KBP feedback into clinical timelines, interpretation of KBP results with respect to clinical trade-offs, and determination of appropriate plan quality improvement criteria.
  • Item
    Thumbnail Image
    Protocol for tumour-focused dose-escalated adaptive radiotherapy for the radical treatment of bladder cancer in a multicentre phase II randomised controlled trial (RAIDER): radiotherapy planning and delivery guidance
    Hafeez, S ; Webster, A ; Hansen, VN ; McNair, HA ; Warren-Oseni, K ; Patel, E ; Choudhury, A ; Creswell, J ; Foroudi, F ; Henry, A ; Kron, T ; McLaren, DB ; Mitra, A ; Mostafid, H ; Saunders, D ; Miles, E ; Griffin, C ; Lewis, R ; Hall, E ; Huddart, R (BMJ PUBLISHING GROUP, 2020)
    INTRODUCTION: Daily radiotherapy delivered with radiosensitisation offers patients with muscle invasive bladder cancer (MIBC) comparable outcomes to cystectomy with functional organ preservation. Most recurrences following radiotherapy occur within the bladder. Increasing the delivered radiotherapy dose to the tumour may further improve local control. Developments in image-guided radiotherapy have allowed bladder tumour-focused 'plan of the day' radiotherapy delivery. We aim to test within a randomised multicentre phase II trial whether this technique will enable dose escalation with acceptable rates of toxicity. METHODS AND ANALYSIS: Patients with T2-T4aN0M0 unifocal MIBC will be randomised (1:1:2) between standard/control whole bladder single plan radiotherapy, standard dose adaptive tumour-focused radiotherapy or dose-escalated adaptive tumour-focused radiotherapy (DART). Adaptive tumour-focused radiotherapy will use a library of three plans (small, medium and large) for treatment. A cone beam CT taken prior to each treatment will be used to visualise the anatomy and inform selection of the most appropriate plan for treatment.Two radiotherapy fractionation schedules (32f and 20f) are permitted. A minimum of 120 participants will be randomised in each fractionation cohort (to ensure 57 evaluable DART patients per cohort).A comprehensive radiotherapy quality assurance programme including pretrial and on-trial components is instituted to ensure standardisation of radiotherapy planning and delivery.The trial has a two-stage non-comparative design. The primary end point of stage I is the proportion of patients meeting predefined normal tissue constraints in the DART group. The primary end point of stage II is late Common Terminology Criteria for Adverse Events grade 3 or worse toxicity aiming to exclude a rate of >20% (80% power and 5% alpha, one sided) in each DART fractionation cohort. Secondary end points include locoregional MIBC control, progression-free survival overall survival and patient-reported outcomes. ETHICS AND DISSEMINATION: This clinical trial is approved by the London-Surrey Borders Research Ethics Committee (15/LO/0539). The results when available will be disseminated via peer-reviewed scientific journals, conference presentations and submission to regulatory authorities. TRIAL REGISTRATION NUMBER: NCT02447549; Pre-results.
  • Item
    Thumbnail Image
    A dosimetric comparison of 3D conformal vs intensity modulated vs volumetric arc radiation therapy for muscle invasive bladder cancer
    Foroudi, F ; Wilson, L ; Bressel, M ; Haworth, A ; Hornby, C ; Pham, D ; Cramb, J ; Gill, S ; Tai, KH ; Kron, T (BMC, 2012-07-23)
    BACKGROUND: To compare 3 Dimensional Conformal radiotherapy (3D-CRT) with Intensity Modulated Radiotherapy (IMRT) with Volumetric-Modulated Arc Therapy (VMAT) for bladder cancer. METHODS: Radiotherapy plans for 15 patients with T2-T4N0M0 bladder cancer were prospectively developed for 3-DCRT, IMRT and VMAT using Varian Eclipse planning system. The same radiation therapist carried out all planning and the same clinical dosimetric constraints were used. 10 of the patients with well localised tumours had a simultaneous infield boost (SIB) of the primary tumour planned for both IMRT and VMAT. Tumour control probabilities and normal tissue complication probabilities were calculated. RESULTS: Mean planning time for 3D-CRT, IMRT and VMAT was 30.0, 49.3, and 141.0 minutes respectively. The mean PTV conformity (CI) index for 3D-CRT was 1.32, for IMRT 1.05, and for VMAT 1.05. The PTV Homogeneity (HI) index was 0.080 for 3D-CRT, 0.073 for IMRT and 0.086 for VMAT. Tumour control and normal tissue complication probabilities were similar for 3D-CRT, IMRT and VMAT. The mean monitor units were 267 (range 250-293) for 3D-CRT; 824 (range 641-1083) for IMRT; and 403 (range 333-489) for VMAT (P < 0.05). Average treatment delivery time were 2:25min (range 2:01-3:09) for 3D-CRT; 4:39 (range 3:41-6:40) for IMRT; and 1:14 (range 1:13-1:14) for VMAT. In selected patients, the SIB did not result in a higher dose to small bowel or rectum. CONCLUSIONS: VMAT is associated with similar dosimetric advantages as IMRT over 3D-CRT for muscle invasive bladder cancer. VMAT is associated with faster delivery times and less number of mean monitor units than IMRT. SIB is feasible in selected patients with localized tumours.
  • Item
    Thumbnail Image
    Seminal vesicle interfraction displacement and margins in image guided radiotherapy for prostate cancer
    Mak, D ; Gill, S ; Paul, R ; Stillie, A ; Haworth, A ; Kron, T ; Cramb, J ; Knight, K ; Thomas, J ; Duchesne, G ; Foroudi, F (BMC, 2012-08-13)
    BACKGROUND: To analyze interfraction motion of seminal vesicles (SV), and its motion relative to rectal and bladder filling. METHODS AND MATERIALS: SV and prostate were contoured on 771 daily computed tomography "on rails" scans from 24 prostate cancer patients undergoing radiotherapy. Random and systematic errors for SV centroid displacement were measured relative to the prostate centroid. Margins required for complete geometric coverage of SV were determined using isotropic expansion of reference contours. SV motion relative to rectum and bladder was determined. RESULTS: Systematic error for the SV was 1.9 mm left-right (LR), 2.9 mm anterior-posterior (AP) and 3.6 mm superior-inferior (SI). Random error was 1.4 mm (LR), 2.7 mm (AP) and 2.1 mm (SI). 10 mm margins covered the entire left SV and right SV on at least 90% of fractions in 50% and 33% of patients and 15 mm margins covered 88% and 79% respectively. SV AP movement correlated with movement of the most posterior point of the bladder (mean R2 = 0.46, SD = 0.24) and rectal area (mean R2 = 0.38, SD = 0.21). CONCLUSIONS: Considerable interfraction displacement of SV was observed in this cohort of patients. Bladder and rectal parameters correlated with SV movement.
  • Item
    Thumbnail Image
    Acute toxicity in prostate cancer patients treated with and without image-guided radiotherapy
    Gill, S ; Thomas, J ; Fox, C ; Kron, T ; Rolfo, A ; Leahy, M ; Chander, S ; Williams, S ; Tai, KH ; Duchesne, GM ; Foroudi, F (BIOMED CENTRAL LTD, 2011-10-28)
    BACKGROUND: Image-guided radiotherapy (IGRT) increases the accuracy of treatment delivery through daily target localisation. We report on toxicity symptoms experienced during radiotherapy treatment, with and without IGRT in prostate cancer patients treated radically. METHODS: Between 2006 and 2009, acute toxicity data for ten symptoms were collected prospectively onto standardized assessment forms. Toxicity was scored during radiotherapy, according to the Common Terminology Criteria Adverse Events V3.0, for 275 prostate cancer patients before and after the implementation of a fiducial marker IGRT program and dose escalation from 74 Gy in 37 fractions, to 78 Gy in 39 fractions. Margins and planning constraints were maintained the same during the study period. The symptoms scored were urinary frequency, cystitis, bladder spasm, urinary incontinence, urinary retention, diarrhoea, haemorrhoids, proctitis, anal skin discomfort and fatigue. Analysis was conducted for the maximum grade of toxicity and the median number of days from the onset of that toxicity to the end of treatment. RESULTS: In the IGRT group, 14228 toxicity scores were analysed from 249 patients. In the non-IGRT group, 1893 toxicity scores were analysed from 26 patients. Urinary frequency ≥G3 affected 23% and 7% in the non-IGRT and IGRT group respectively (p = 0.0188). Diarrhoea ≥G2 affected 15% and 3% of patients in the non-IGRT and IGRT groups (p = 0.0174). Fatigue ≥G2 affected 23% and 8% of patients in the non-IGRT and IGRT groups (p = 0.0271). The median number of days with a toxicity was higher for ≥G2 (p = 0.0179) and ≥G3 frequency (p = 0.0027), ≥G2 diarrhoea (p = 0.0033) and ≥G2 fatigue (p = 0.0088) in the non-IGRT group compared to the IGRT group. Other toxicities were not of significant statistical difference. CONCLUSIONS: In this study, prostate cancer patients treated radically with IGRT had less severe urinary frequency, diarrhoea and fatigue during treatment compared to patients treated with non-IGRT. Onset of these symptoms was earlier in the non-IGRT group. IGRT results in less acute toxicity during radiotherapy in prostate cancer.
  • Item
    Thumbnail Image
    Short communication: timeline of radiation-induced kidney function loss after stereotactic ablative body radiotherapy of renal cell carcinoma as evaluated by serial 99mTc-DMSA SPECT/CT
    Jackson, P ; Foroudi, F ; Pham, D ; Hofman, MS ; Hardcastle, N ; Callahan, J ; Kron, T ; Siva, S (BMC, 2014-11-26)
    BACKGROUND: Stereotactic ablative body radiotherapy (SABR) has been proposed as a definitive treatment for patients with inoperable primary renal cell carcinoma. However, there is little documentation detailing the radiobiological effects of hypofractionated radiation on healthy renal tissue. FINDINGS: In this study we describe a methodology for assessment of regional change in renal function in response to single fraction SABR of 26 Gy. In a patient with a solitary kidney, detailed follow-up of kidney function post-treatment was determined through 3-dimensional SPECT/CT imaging and (51)Cr-EDTA measurements. Based on measurements of glomerular filtration rate, renal function declined rapidly by 34% at 3 months, plateaued at 43% loss at 12 months, with minimal further decrease to 49% of baseline by 18 months. CONCLUSIONS: The pattern of renal functional change in (99m)Tc-DMSA uptake on SPECT/CT imaging correlates with dose delivered. This study demonstrates a dose effect relationship of SABR with loss of kidney function.
  • Item
    Thumbnail Image
    Seminal vesicle intrafraction motion analysed with cinematic magnetic resonance imaging
    Gill, S ; Dang, K ; Fox, C ; Bressel, M ; Kron, T ; Bergen, N ; Ferris, N ; Owen, R ; Chander, S ; Tai, KH ; Foroudi, F (BMC, 2014-08-08)
    PURPOSE: This study analyses seminal vesicle displacement relative to the prostate and in relation to treatment time. METHOD: A group of eleven patients undergoing prostate cancer radiotherapy were imaged with a continuous 3 T cine-MRI in the standard treatment setup position. Four images were recorded every 4 seconds for 15 minutes in the sagittal plane and every 6.5 seconds for 12 minutes in the coronal plane. The prostate gland and seminal vesicles were contoured on each MRI image. The coordinates of the centroid of the prostate and seminal vesicles on each image was analysed for displacement against time. Displacements between the 2.5 percentile and 97.5 percentile (i.e. the 2.5% trimmed range) for prostate and seminal vesicle centroid displacements were measured for 3, 5, 10 and 15 minutes time intervals in the anterior-posterior (AP), left-right (LR) and superior-inferior (SI) directions. Real time prostate and seminal vesicle displacement was compared for individual patients. RESULTS: The 2.5% trimmed range for 3, 5, 10 and 15 minutes for the seminal vesicle centroids in the SI direction measured 4.7 mm; 5.8 mm; 6.5 mm and 7.2 mm respectively. In the AP direction, it was 4.0 mm, 4.5 mm, 6.5 mm, and 7.0 mm. In the LR direction for 3, 5 and 10 minutes; for the left seminal vesicle, it was 2.7 mm, 2.8 mm, 3.4 mm and for the right seminal vesicle, it was 3.4 mm, 3.3 mm, and 3.4 mm. The correlation between the real-time prostate and seminal vesicle displacement varied substantially between patients indicating that the relationship between prostate displacement and seminal vesicles displacement is patient specific with the majority of the patients not having a strong relationship. CONCLUSION: Our study shows that seminal vesicle motion increases with treatment time, and that the prostate and seminal vesicle centroids do not move in unison in real time, and that an additional margin is required for independent seminal vesicle motion if treatment localisation is to the prostate.