Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 12
  • Item
    Thumbnail Image
    Inhibition of mutant IDH1 promotes cycling of acute myeloid leukemia stem cells
    Gruber, E ; So, J ; Lewis, AC ; Franich, R ; Cole, R ; Martelotto, LG ; Rogers, AJ ; Vidacs, E ; Fraser, P ; Stanley, K ; Jones, L ; Trigos, A ; Thio, N ; Li, J ; Nicolay, B ; Daigle, S ; Tron, AE ; Hyer, ML ; Shortt, J ; Johnstone, RW ; Kats, LM (CELL PRESS, 2022-08-16)
    Approximately 20% of acute myeloid leukemia (AML) patients carry mutations in IDH1 or IDH2 that result in over-production of the oncometabolite D-2-hydroxyglutarate (2-HG). Small molecule inhibitors that block 2-HG synthesis can induce complete morphological remission; however, almost all patients eventually acquire drug resistance and relapse. Using a multi-allelic mouse model of IDH1-mutant AML, we demonstrate that the clinical IDH1 inhibitor AG-120 (ivosidenib) exerts cell-type-dependent effects on leukemic cells, promoting delayed disease regression. Although single-agent AG-120 treatment does not fully eradicate the disease, it increases cycling of rare leukemia stem cells and triggers transcriptional upregulation of the pyrimidine salvage pathway. Accordingly, AG-120 sensitizes IDH1-mutant AML to azacitidine, with the combination of AG-120 and azacitidine showing vastly improved efficacy in vivo. Our data highlight the impact of non-genetic heterogeneity on treatment response and provide a mechanistic rationale for the observed combinatorial effect of AG-120 and azacitidine in patients.
  • Item
    Thumbnail Image
    Distinct modulation of IFNγ-induced transcription by BET bromodomain and catalytic P300/CBP inhibition in breast cancer
    Hogg, SJ ; Motorna, O ; Kearney, CJ ; Derrick, EB ; House, IG ; Todorovski, I ; Kelly, MJ ; Zethoven, M ; Bromberg, KD ; Lai, A ; Beavis, PA ; Shortt, J ; Johnstone, RW ; Vervoort, SJ (BMC, 2022-12)
    BACKGROUND: Interferon gamma (IFNγ) is a pro-inflammatory cytokine that directly activates the JAK/STAT pathway. However, the temporal dynamics of chromatin remodeling and transcriptional activation initiated by IFNγ have not been systematically profiled in an unbiased manner. Herein, we integrated transcriptomic and epigenomic profiling to characterize the acute epigenetic changes induced by IFNγ stimulation in a murine breast cancer model. RESULTS: We identified de novo activation of cis-regulatory elements bound by Irf1 that were characterized by increased chromatin accessibility, differential usage of pro-inflammatory enhancers, and downstream recruitment of BET proteins and RNA polymerase II. To functionally validate this hierarchical model of IFNγ-driven transcription, we applied selective antagonists of histone acetyltransferases P300/CBP or acetyl-lysine readers of the BET family. This highlighted that histone acetylation is an antecedent event in IFNγ-driven transcription, whereby targeting of P300/CBP acetyltransferase activity but not BET inhibition could curtail the epigenetic remodeling induced by IFNγ through suppression of Irf1 transactivation. CONCLUSIONS: These data highlight the ability for epigenetic therapies to reprogram pro-inflammatory gene expression, which may have therapeutic implications for anti-tumor immunity and inflammatory diseases.
  • Item
    No Preview Available
    Targeting histone acetylation dynamics and oncogenic transcription by catalytic P300/CBP inhibition
    Hogg, SJ ; Motorna, O ; Cluse, LA ; Johanson, TM ; Coughlan, HD ; Raviram, R ; Myers, RM ; Costacurta, M ; Todorovski, I ; Pijpers, L ; Bjelosevic, S ; Williams, T ; Huskins, SN ; Kearney, CJ ; Devlin, JR ; Fan, Z ; Jabbari, JS ; Martin, BP ; Fareh, M ; Kelly, MJ ; Dupere-Richer, D ; Sandow, JJ ; Feran, B ; Knight, D ; Khong, T ; Spencer, A ; Harrison, SJ ; Gregory, G ; Wickramasinghe, VO ; Webb, A ; Taberlay, PC ; Bromberg, KD ; Lai, A ; Papenfuss, AT ; Smyth, GK ; Allan, RS ; Licht, JD ; Landau, DA ; Abdel-Wahab, O ; Shortt, J ; Vervoort, SJ ; Johnstone, RW (CELL PRESS, 2021-05-20)
    To separate causal effects of histone acetylation on chromatin accessibility and transcriptional output, we used integrated epigenomic and transcriptomic analyses following acute inhibition of major cellular lysine acetyltransferases P300 and CBP in hematological malignancies. We found that catalytic P300/CBP inhibition dynamically perturbs steady-state acetylation kinetics and suppresses oncogenic transcriptional networks in the absence of changes to chromatin accessibility. CRISPR-Cas9 screening identified NCOR1 and HDAC3 transcriptional co-repressors as the principal antagonists of P300/CBP by counteracting acetylation turnover kinetics. Finally, deacetylation of H3K27 provides nucleation sites for reciprocal methylation switching, a feature that can be exploited therapeutically by concomitant KDM6A and P300/CBP inhibition. Overall, this study indicates that the steady-state histone acetylation-methylation equilibrium functions as a molecular rheostat governing cellular transcription that is amenable to therapeutic exploitation as an anti-cancer regimen.
  • Item
    Thumbnail Image
    Long term, continuous exposure to panobinostat induces terminal differentiation and long term survival in the TH-MYCN neuroblastoma mouse model
    Waldeck, K ; Cullinane, C ; Ardley, K ; Shortt, J ; Martin, B ; Tothill, RW ; Li, J ; Johnstone, RW ; McArthur, GA ; Hicks, RJ ; Wood, PJ (WILEY, 2016-07-01)
    Neuroblastoma is the most common extra-cranial malignancy in childhood and accounts for ∼15% of childhood cancer deaths. Amplification of MYCN in neuroblastoma is associated with aggressive disease and predicts for poor prognosis. Novel therapeutic approaches are therefore essential to improving patient outcomes in this setting. The histone deacetylases are known to interact with N-Myc and regulate numerous cellular processes via epigenetic modulation, including differentiation. In this study, we used the TH-MYCN mouse model of neuroblastoma to investigate the antitumor activity of the pan-HDAC inhibitor, panobinostat. In particular we sought to explore the impact of long term, continuous panobinostat exposure on the epigenetically driven differentiation process. Continuous treatment of tumor bearing TH-MYCN transgenic mice with panobinostat for nine weeks led to a significant improvement in survival as compared with mice treated with panobinostat for a three-week period. Panobinostat induced rapid tumor regression with no regrowth observed following a nine-week treatment period. Initial tumor response was associated with apoptosis mediated via upregulation of BMF and BIM. The process of terminal differentiation of neuroblastoma into benign ganglioneuroma, with a characteristic increase in S100 expression and reduction of N-Myc expression, occurred following prolonged exposure to the drug. RNA-sequencing analysis of tumors from treated animals confirmed significant upregulation of gene pathways associated with apoptosis and differentiation. Together our data demonstrate the potential of panobinostat as a novel therapeutic strategy for high-risk neuroblastoma patients.
  • Item
    No Preview Available
    Whole genome CRISPR screening identifies TOP2B as a potential target for IMiD sensitization in multiple myeloma
    Costacurta, M ; Vervoort, SJ ; Hogg, SJ ; Martin, BP ; Johnstone, RW ; Shortt, J (FERRATA STORTI FOUNDATION, 2021-07)
    Not available.
  • Item
    Thumbnail Image
    Preclinical screening of histone deacetylase inhibitors combined with ABT-737, rhTRAIL/MD5-1 or 5-azacytidine using syngeneic Vk*MYC multiple myeloma
    Matthews, GM ; Lefebure, M ; Doyle, MA ; Shortt, J ; Ellul, J ; Chesi, M ; Banks, K-M ; Vidacs, E ; Faulkner, D ; Atadja, P ; Bergsagel, PL ; Johnstone, RW (NATURE PUBLISHING GROUP, 2013-09)
    Multiple myeloma (MM) is an incurable malignancy with an unmet need for innovative treatment options. Histone deacetylase inhibitors (HDACi) are a new class of anticancer agent that have demonstrated activity in hematological malignancies. Here, we investigated the efficacy and safety of HDACi (vorinostat, panobinostat, romidepsin) and novel combination therapies using in vitro human MM cell lines and in vivo preclinical screening utilizing syngeneic transplanted Vk*MYC MM. HDACi were combined with ABT-737, which targets the intrinsic apoptosis pathway, recombinant human tumour necrosis factor-related apoptosis-inducing ligand (rhTRAIL/MD5-1), that activates the extrinsic apoptosis pathway or the DNA methyl transferase inhibitor 5-azacytidine. We demonstrate that in vitro cell line-based studies provide some insight into drug activity and combination therapies that synergistically kill MM cells; however, they do not always predict in vivo preclinical efficacy or toxicity. Importantly, utilizing transplanted Vk*MYC MM, we report that panobinostat and 5-azacytidine synergize to prolong the survival of tumor-bearing mice. In contrast, combined HDACi/rhTRAIL-based strategies, while efficacious, demonstrated on-target dose-limiting toxicities that precluded prolonged treatment. Taken together, our studies provide evidence that the transplanted Vk*MYC model of MM is a useful screening tool for anti-MM drugs and should aid in the prioritization of novel drug testing in the clinic.
  • Item
    Thumbnail Image
    CDK9 inhibition by dinaciclib potently suppresses Mcl-1 to induce durable apoptotic responses in aggressive MYC-driven B-cell lymphoma in vivo
    Gregory, GP ; Hogg, SJ ; Kats, LM ; Vidacs, E ; Baker, AJ ; Gilan, O ; Lefebure, M ; Martin, BP ; Dawson, MA ; Johnstone, RW ; Shortt, J (NATURE PUBLISHING GROUP, 2015-06)
  • Item
    Thumbnail Image
    Genomic characterisation of Eμ-Myc mouse lymphomas identifies Bcor as a Myc co-operative tumour-suppressor gene
    Lefebure, M ; Tothill, RW ; Kruse, E ; Hawkins, ED ; Shortt, J ; Matthews, GM ; Gregory, GP ; Martin, BP ; Kelly, MJ ; Todorovski, I ; Doyle, MA ; Lupat, R ; Li, J ; Schroeder, J ; Wall, M ; Craig, S ; Poortinga, G ; Cameron, D ; Bywater, M ; Kats, L ; Gearhart, MD ; Bardwell, VJ ; Dickins, RA ; Hannan, RD ; Papenfuss, AT ; Johnstone, RW (NATURE PUBLISHING GROUP, 2017-03-06)
    The Eμ-Myc mouse is an extensively used model of MYC driven malignancy; however to date there has only been partial characterization of MYC co-operative mutations leading to spontaneous lymphomagenesis. Here we sequence spontaneously arising Eμ-Myc lymphomas to define transgene architecture, somatic mutations, and structural alterations. We identify frequent disruptive mutations in the PRC1-like component and BCL6-corepressor gene Bcor. Moreover, we find unexpected concomitant multigenic lesions involving Cdkn2a loss and other cancer genes including Nras, Kras and Bcor. These findings challenge the assumed two-hit model of Eμ-Myc lymphoma and demonstrate a functional in vivo role for Bcor in suppressing tumorigenesis.
  • Item
    Thumbnail Image
    The SMAC mimetic, LCL-161, reduces survival in aggressive MYC-driven lymphoma while promoting susceptibility to endotoxic shock
    West, AC ; Martin, BP ; Andrews, DA ; Hogg, SJ ; Banerjee, A ; Grigoriadis, G ; Johnstone, RW ; Shortt, J (NATURE PUBLISHING GROUP, 2016-04)
    Inhibitor of apoptosis proteins (IAPs) antagonize caspase activation and regulate death receptor signaling cascades. LCL-161 is a small molecule second mitochondrial activator of caspase (SMAC) mimetic, which both disengages IAPs from caspases and induces proteasomal degradation of cIAP-1 and -2, resulting in altered signaling through the NFκB pathway, enhanced TNF production and sensitization to apoptosis mediated by the extrinsic pathway. SMAC mimetics are undergoing clinical evaluation in a range of hematological malignancies. Burkitt-like lymphomas are hallmarked by a low apoptotic threshold, conveying sensitivity to a range of apoptosis-inducing stimuli. While evaluating LCL-161 in the Eμ-Myc model of aggressive Burkitt-like lymphoma, we noted unexpected resistance to apoptosis induction despite 'on-target' IAP degradation and NFκB activation. Moreover, LCL-161 treatment of lymphoma-bearing mice resulted in apparent disease acceleration concurrent to augmented inflammatory cytokine-release in the same animals. Indiscriminate exposure of lymphoma patients to SMAC mimetics may therefore be detrimental due to both unanticipated prolymphoma effects and increased susceptibility to endotoxic shock.
  • Item
    Thumbnail Image
    AKT signalling is required for ribosomal RNA synthesis and progression of Eμ-Myc B-cell lymphoma in vivo
    Devlin, JR ; Hannan, KM ; Ng, PY ; Bywater, MJ ; Shortt, J ; Cullinane, C ; McArthur, GA ; Johnstone, RW ; Hannan, RD ; Pearson, RB (WILEY-BLACKWELL, 2013-11)
    The dysregulation of PI3K/AKT/mTORC1 signalling and/or hyperactivation of MYC are observed in a high proportion of human cancers, and together they form a 'super signalling' network mediating malignancy. A fundamental downstream action of this signalling network is up-regulation of ribosome biogenesis and subsequent alterations in the patterns of translation and increased protein synthesis, which are thought to be critical for AKT/MYC-driven oncogenesis. We have demonstrated that AKT and MYC cooperate to drive ribosomal DNA (rDNA) transcription and ribosome biogenesis, with AKT being essential for rDNA transcription and in vitro survival of lymphoma cells isolated from a MYC-driven model of B-cell lymphoma (Eμ-Myc) [Chan JC et al., (2011) Science Signalling 4, ra56]. Here we show that the allosteric AKT inhibitor MK-2206 rapidly and potently antagonizes rDNA transcription in Eμ-Myc B-cell lymphomas in vivo, and this is associated with a rapid reduction in indicators of disease burden, including spleen weight and the abundance of tumour cells in both the circulation and lymph nodes. Extended treatment of tumour-bearing mice with MK-2206 resulted in a significant delay in disease progression, associated with increased B-cell lymphoma apoptosis. Our findings suggest that malignant diseases characterized by unrestrained ribosome biogenesis may be vulnerable to therapeutic strategies that target the PI3K/AKT/mTORC1/MYC growth control network.