Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 18
  • Item
    Thumbnail Image
    High rates of potentially infectious exposures between immunocompromised patients and their companion animals: an unmet need for education
    Gurry, GA ; Campion, V ; Premawardena, C ; Woolley, I ; Shortt, J ; Bowden, DK ; Kaplan, Z ; Dendle, C (WILEY, 2017-03)
    A cross-sectional survey of 265 adult patients with haematological malignancy, haemoglobinopathy or human immunodeficiency virus was performed to determine the potential risk of infection from animal exposures. One hundred and thirty-seven (52%) owned an animal; the majority were dogs (74%) and cats (39%), but 14% owned birds and 3% reptiles. Eighty percent engaged in behaviour with their animals that potentially put them at risk of zoonotic infections. The most frequent behaviours were picking up animal faeces 72 (52%), cleaning animal areas 69 (50%) and allowing animals to sleep in the same bed 51 (37%). Twenty-eight percent allowed the animal to lick their face. Of all patients, 80 (30%) had been bitten or scratched by an animal. Only 16% of those who owned pets could recall receiving education regarding safe behaviours around animals. These immunocompromised patients are at risk of infection through exposure to pets. Our study highlights the need for increased education of patients regarding how to remain safe around their pets.
  • Item
    Thumbnail Image
    Long term, continuous exposure to panobinostat induces terminal differentiation and long term survival in the TH-MYCN neuroblastoma mouse model
    Waldeck, K ; Cullinane, C ; Ardley, K ; Shortt, J ; Martin, B ; Tothill, RW ; Li, J ; Johnstone, RW ; McArthur, GA ; Hicks, RJ ; Wood, PJ (WILEY, 2016-07-01)
    Neuroblastoma is the most common extra-cranial malignancy in childhood and accounts for ∼15% of childhood cancer deaths. Amplification of MYCN in neuroblastoma is associated with aggressive disease and predicts for poor prognosis. Novel therapeutic approaches are therefore essential to improving patient outcomes in this setting. The histone deacetylases are known to interact with N-Myc and regulate numerous cellular processes via epigenetic modulation, including differentiation. In this study, we used the TH-MYCN mouse model of neuroblastoma to investigate the antitumor activity of the pan-HDAC inhibitor, panobinostat. In particular we sought to explore the impact of long term, continuous panobinostat exposure on the epigenetically driven differentiation process. Continuous treatment of tumor bearing TH-MYCN transgenic mice with panobinostat for nine weeks led to a significant improvement in survival as compared with mice treated with panobinostat for a three-week period. Panobinostat induced rapid tumor regression with no regrowth observed following a nine-week treatment period. Initial tumor response was associated with apoptosis mediated via upregulation of BMF and BIM. The process of terminal differentiation of neuroblastoma into benign ganglioneuroma, with a characteristic increase in S100 expression and reduction of N-Myc expression, occurred following prolonged exposure to the drug. RNA-sequencing analysis of tumors from treated animals confirmed significant upregulation of gene pathways associated with apoptosis and differentiation. Together our data demonstrate the potential of panobinostat as a novel therapeutic strategy for high-risk neuroblastoma patients.
  • Item
    Thumbnail Image
    Consensus opinion on diagnosis and management of thrombotic microangiopathy in Australia and New Zealand
    Fox, LC ; Cohney, SJ ; Kausman, JY ; Shortt, J ; Hughes, PD ; Wood, EM ; Isbel, NM ; de Malmanche, T ; Durkan, A ; Hissaria, P ; Blombery, P ; Barbour, TD (WILEY, 2018-06)
    Thrombotic microangiopathy (TMA) arises in a variety of clinical circumstances with the potential to cause significant dysfunction of the kidneys, brain, gastrointestinal tract and heart. TMA should be considered in all patients with thrombocytopenia and anaemia, with an immediate request to the haematology laboratory to look for red cell fragments on a blood film. Although TMA of any aetiology generally demands prompt treatment, this is especially so in thrombotic thrombocytopenic purpura (TTP) and atypical haemolytic uraemic syndrome (aHUS), where organ failure may be precipitous, irreversible and fatal. In all adults, urgent, empirical plasma exchange (PE) should be started within 4-8 h of presentation for a possible diagnosis of TTP, pending a result for ADAMTS13 (a disintegrin and metalloprotease thrombospondin, number 13) activity. A sodium citrate plasma sample should be collected for ADAMTS13 testing prior to any plasma therapy. In children, Shiga toxin-associated haemolytic uraemic syndrome due to infection with Escherichia coli (STEC-HUS) is the commonest cause of TMA, and is managed supportively. If TTP and STEC-HUS have been excluded, a diagnosis of aHUS should be considered, for which treatment is with the monoclonal complement C5 inhibitor, eculizumab. Although early confirmation of aHUS is often not possible, except in the minority of patients in whom auto-antibodies against factor H are identified, genetic testing ultimately reveals a complement-related mutation in a significant proportion of aHUS cases. The presence of other TMA-associated conditions (e.g. infection, pregnancy/postpartum and malignant hypertension) does not exclude TTP or aHUS as the underlying cause of TMA.
  • Item
    Thumbnail Image
    Consensus opinion on diagnosis and management of thrombotic microangiopathy in Australia and New Zealand
    Fox, LC ; Cohney, SJ ; Kausman, JY ; Shortt, J ; Hughes, PD ; Wood, EM ; Isbel, NM ; de Malmanche, T ; Durkan, A ; Hissaria, P ; Blombery, P ; Barbour, TD (WILEY, 2018-06)
    Thrombotic microangiopathy (TMA) arises in a variety of clinical circumstances with the potential to cause significant dysfunction of the kidneys, brain, gastrointestinal tract and heart. TMA should be considered in all patients with thrombocytopenia and anaemia, with an immediate request to the haematology laboratory to look for red cell fragments on a blood film. While TMA of any aetiology generally demands prompt treatment, this is especially so in thrombotic thrombocytopenic purpura (TTP) and atypical haemolytic uraemic syndrome (aHUS), where organ failure may be precipitous, irreversible and fatal. In all adults, urgent, empirical plasma exchange (PE) should be started within 4-8 h of presentation for a possible diagnosis of TTP, pending a result for ADAMTS13 activity (a disintegrin and metalloprotease thrombospondin, number 13). A sodium citrate plasma sample should be collected for ADAMTS13 testing prior to any plasma therapy. In children, Shiga toxin-associated haemolytic uraemic syndrome due to infection with Escherichia coli (STEC-HUS) is the commonest cause of TMA, and is managed supportively. If TTP and STEC-HUS have been excluded, a diagnosis of aHUS should be considered, for which treatment is with the monoclonal complement C5 inhibitor, eculizumab. While early confirmation of aHUS is often not possible, except in the minority of patients in whom autoantibodies against factor H are identified, genetic testing ultimately reveals a complement-related mutation in a significant proportion of aHUS cases. The presence of other TMA-associated conditions (e.g. infection, pregnancy/postpartum and malignant hypertension) does not exclude TTP or aHUS as the underlying cause of TMA.
  • Item
    Thumbnail Image
    Chronic myeloid leukaemia and tyrosine kinase inhibitor therapy: assessment and management of cardiovascular risk factors
    Ross, DM ; Arthur, C ; Burbury, K ; Ko, BS ; Mills, AK ; Shortt, J ; Kostner, K (WILEY, 2018-02)
    Several BCR-ABL1 tyrosine kinase inhibitors (TKIs) are approved for the first-line treatment of chronic phase chronic myeloid leukaemia (CML). Disease control is achieved in the vast majority of patients and disease-specific survival is excellent. Consequently, there is now emphasis on managing comorbidities and minimising treatment-related toxicity. Second-generation TKIs have cardiovascular risks that are greater than with imatinib treatment, but these risks must be balanced against the superior CML responses encountered with more potent TKIs. Cardiovascular risk should be assessed at baseline using a locally validated model based on the Framingham risk equation. Clinicians involved in the care of CML patients should be aware of the vascular complications of TKIs and manage cardiovascular risk factors early to mitigate treatment-related risks. Reversible risk factors, such as dyslipidaemia, smoking, diabetes and hypertension, should be addressed. We summarise the available data on cardiovascular complications in CML patients treated with TKIs. Using the latest evidence and collective expert opinion, we provide practical advice for clinicians to assess, stratify and manage cardiovascular risk in people with CML receiving TKI therapy.
  • Item
    Thumbnail Image
    Preclinical screening of histone deacetylase inhibitors combined with ABT-737, rhTRAIL/MD5-1 or 5-azacytidine using syngeneic Vk*MYC multiple myeloma
    Matthews, GM ; Lefebure, M ; Doyle, MA ; Shortt, J ; Ellul, J ; Chesi, M ; Banks, K-M ; Vidacs, E ; Faulkner, D ; Atadja, P ; Bergsagel, PL ; Johnstone, RW (NATURE PUBLISHING GROUP, 2013-09)
    Multiple myeloma (MM) is an incurable malignancy with an unmet need for innovative treatment options. Histone deacetylase inhibitors (HDACi) are a new class of anticancer agent that have demonstrated activity in hematological malignancies. Here, we investigated the efficacy and safety of HDACi (vorinostat, panobinostat, romidepsin) and novel combination therapies using in vitro human MM cell lines and in vivo preclinical screening utilizing syngeneic transplanted Vk*MYC MM. HDACi were combined with ABT-737, which targets the intrinsic apoptosis pathway, recombinant human tumour necrosis factor-related apoptosis-inducing ligand (rhTRAIL/MD5-1), that activates the extrinsic apoptosis pathway or the DNA methyl transferase inhibitor 5-azacytidine. We demonstrate that in vitro cell line-based studies provide some insight into drug activity and combination therapies that synergistically kill MM cells; however, they do not always predict in vivo preclinical efficacy or toxicity. Importantly, utilizing transplanted Vk*MYC MM, we report that panobinostat and 5-azacytidine synergize to prolong the survival of tumor-bearing mice. In contrast, combined HDACi/rhTRAIL-based strategies, while efficacious, demonstrated on-target dose-limiting toxicities that precluded prolonged treatment. Taken together, our studies provide evidence that the transplanted Vk*MYC model of MM is a useful screening tool for anti-MM drugs and should aid in the prioritization of novel drug testing in the clinic.
  • Item
    Thumbnail Image
    CDK9 inhibition by dinaciclib potently suppresses Mcl-1 to induce durable apoptotic responses in aggressive MYC-driven B-cell lymphoma in vivo
    Gregory, GP ; Hogg, SJ ; Kats, LM ; Vidacs, E ; Baker, AJ ; Gilan, O ; Lefebure, M ; Martin, BP ; Dawson, MA ; Johnstone, RW ; Shortt, J (NATURE PUBLISHING GROUP, 2015-06)
  • Item
    Thumbnail Image
    Genomic characterisation of Eμ-Myc mouse lymphomas identifies Bcor as a Myc co-operative tumour-suppressor gene
    Lefebure, M ; Tothill, RW ; Kruse, E ; Hawkins, ED ; Shortt, J ; Matthews, GM ; Gregory, GP ; Martin, BP ; Kelly, MJ ; Todorovski, I ; Doyle, MA ; Lupat, R ; Li, J ; Schroeder, J ; Wall, M ; Craig, S ; Poortinga, G ; Cameron, D ; Bywater, M ; Kats, L ; Gearhart, MD ; Bardwell, VJ ; Dickins, RA ; Hannan, RD ; Papenfuss, AT ; Johnstone, RW (NATURE PUBLISHING GROUP, 2017-03-06)
    The Eμ-Myc mouse is an extensively used model of MYC driven malignancy; however to date there has only been partial characterization of MYC co-operative mutations leading to spontaneous lymphomagenesis. Here we sequence spontaneously arising Eμ-Myc lymphomas to define transgene architecture, somatic mutations, and structural alterations. We identify frequent disruptive mutations in the PRC1-like component and BCL6-corepressor gene Bcor. Moreover, we find unexpected concomitant multigenic lesions involving Cdkn2a loss and other cancer genes including Nras, Kras and Bcor. These findings challenge the assumed two-hit model of Eμ-Myc lymphoma and demonstrate a functional in vivo role for Bcor in suppressing tumorigenesis.
  • Item
    Thumbnail Image
    Nilotinib dose-optimization in newly diagnosed chronic myeloid leukaemia in chronic phase: final results from ENESTxtnd
    Hughes, TP ; Munhoz, E ; Salvino, MA ; Ong, TC ; Elhaddad, A ; Shortt, J ; Quach, H ; Pavlovsky, C ; Louw, VJ ; Shih, L-Y ; Turkina, AG ; Meillon, L ; Jin, Y ; Acharya, S ; Dalal, D ; Lipton, JH (WILEY, 2017-10)
    The Evaluating Nilotinib Efficacy and Safety in Clinical Trials-Extending Molecular Responses (ENESTxtnd) study was conducted to evaluate the kinetics of molecular response to nilotinib in patients with newly diagnosed chronic myeloid leukaemia in chronic phase and the impact of novel dose-optimization strategies on patient outcomes. The ENESTxtnd protocol allowed nilotinib dose escalation (from 300 to 400 mg twice daily) in the case of suboptimal response or treatment failure as well as dose re-escalation for patients with nilotinib dose reductions due to adverse events. Among 421 patients enrolled in ENESTxtnd, 70·8% (95% confidence interval, 66·2-75·1%) achieved major molecular response (BCR-ABL1 ≤ 0·1% on the International Scale) by 12 months (primary endpoint). By 24 months, 81·0% of patients achieved major molecular response, including 63·6% (56 of 88) of those with dose escalations for lack of efficacy and 74·3% (55 of 74) of those with dose reductions due to adverse events (including 43 of 54 patients with successful re-escalation). The safety profile of nilotinib was consistent with prior studies. The most common non-haematological adverse events were headache, rash, and nausea; cardiovascular events were reported in 4·5% of patients (grade 3/4, 3·1%). The study was registered at clinicaltrials.gov (NCT01254188).
  • Item
    Thumbnail Image
    Identification of a Siglec-F plus granulocyte-macrophage progenitor
    Bolden, JE ; Lucas, EC ; Zhou, G ; O'Sullivan, JA ; de Graaf, CA ; McKenzie, MD ; Di Rago, L ; Baldwin, TM ; Shortt, J ; Alexander, WS ; Bochner, BS ; Ritchie, ME ; Hilton, DJ ; Fairfax, KA (WILEY, 2018-07)
    In recent years multi-parameter flow cytometry has enabled identification of cells at major stages in myeloid development; from pluripotent hematopoietic stem cells, through populations with increasingly limited developmental potential (common myeloid progenitors and granulocyte-macrophage progenitors), to terminally differentiated mature cells. Myeloid progenitors are heterogeneous, and the surface markers that define transition states from progenitors to mature cells are poorly characterized. Siglec-F is a surface glycoprotein frequently used in combination with IL-5 receptor alpha (IL5Rα) for the identification of murine eosinophils. Here, we describe a CD11b+ Siglec-F+ IL5Rα- myeloid population in the bone marrow of C57BL/6 mice. The CD11b+ Siglec-F+ IL5Rα- cells are retained in eosinophil deficient PHIL mice, and are not expanded upon overexpression of IL-5, indicating that they are upstream or independent of the eosinophil lineage. We show these cells to have GMP-like developmental potential in vitro and in vivo, and to be transcriptionally distinct from the classically described GMP population. The CD11b+ Siglec-F+ IL5Rα- population expands in the bone marrow of Myb mutant mice, which is potentially due to negative transcriptional regulation of Siglec-F by Myb. Lastly, we show that the role of Siglec-F may be, at least in part, to regulate GMP viability.