Surgery (RMH) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    The genetic architecture of breast papillary lesions as a predictor of progression to carcinoma
    Kader, T ; Elder, K ; Zethoven, M ; Semple, T ; Hill, P ; Goode, DL ; Thio, N ; Cheasley, D ; Rowley, SM ; Byrne, DJ ; Pang, J-M ; Miligy, IM ; Green, AR ; Rakha, EA ; Fox, SB ; Mann, GB ; Campbell, IG ; Gorringe, KL (NATURE PORTFOLIO, 2020-03-12)
    Intraductal papillomas (IDP) are challenging breast findings because of their variable risk of progression to malignancy. The molecular events driving IDP development and genomic features of malignant progression are poorly understood. In this study, genome-wide CNA and/or targeted mutation analysis was performed on 44 cases of IDP, of which 20 cases had coexisting ductal carcinoma in situ (DCIS), papillary DCIS or invasive ductal carcinoma (IDC). CNA were rare in pure IDP, but 69% carried an activating PIK3CA mutation. Among the synchronous IDP cases, 55% (11/20) were clonally related to the synchronous DCIS and/or IDC, only one of which had papillary histology. In contrast to pure IDP, PIK3CA mutations were absent from clonal cases. CNAs in any of chromosomes 1, 16 or 11 were significantly enriched in clonal IDP lesions compared to pure and non-clonal IDP. The observation that 55% of IDP are clonal to DCIS/IDC indicates that IDP can be a direct precursor for breast carcinoma, not limited to the papillary type. The absence of PIK3CA mutations and presence of CNAs in IDP could be used clinically to identify patients at high risk of progression to carcinoma.
  • Item
    Thumbnail Image
    The TP53 mutation rate differs in breast cancers that arise in women with high or low mammographic density
    Cheasley, D ; Devereux, L ; Hughes, S ; Nickson, C ; Procopio, P ; Lee, G ; Li, N ; Pridmore, V ; Elder, K ; Mann, GB ; Kader, T ; Rowley, SM ; Fox, SB ; Byrne, D ; Saunders, H ; Fujihara, KM ; Lim, B ; Gorringe, KL ; Campbell, IG (NATURE RESEARCH, 2020-08-07)
    Mammographic density (MD) influences breast cancer risk, but how this is mediated is unknown. Molecular differences between breast cancers arising in the context of the lowest and highest quintiles of mammographic density may identify the mechanism through which MD drives breast cancer development. Women diagnosed with invasive or in situ breast cancer where MD measurement was also available (n = 842) were identified from the Lifepool cohort of >54,000 women participating in population-based mammographic screening. This group included 142 carcinomas in the lowest quintile of MD and 119 carcinomas in the highest quintile. Clinico-pathological and family history information were recorded. Tumor DNA was collected where available (n = 56) and sequenced for breast cancer predisposition and driver gene mutations, including copy number alterations. Compared to carcinomas from low-MD breasts, those from high-MD breasts were significantly associated with a younger age at diagnosis and features associated with poor prognosis. Low- and high-MD carcinomas matched for grade, histological subtype, and hormone receptor status were compared for somatic genetic features. Low-MD carcinomas had a significantly increased frequency of TP53 mutations, higher homologous recombination deficiency, higher fraction of the genome altered, and more copy number gains on chromosome 1q and losses on 17p. While high-MD carcinomas showed enrichment of tumor-infiltrating lymphocytes in the stroma. The data demonstrate that when tumors were matched for confounding clinico-pathological features, a proportion in the lowest quintile of MD appear biologically distinct, reflective of microenvironment differences between the lowest and highest quintiles of MD.