Surgery (RMH) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Active surveillance versus enzalutamide for low-risk prostate cancer - was it really a trial we needed?
    Williams, ISC ; Perera, S ; Murphy, DG ; Corcoran, NM ; Bolton, DM ; Lawrentschuk, N (WILEY, 2022-11)
  • Item
    Thumbnail Image
    Ductal adenocarcinoma of the prostate: A systematic review and meta-analysis of incidence, presentation, prognosis, and management
    Ranasinha, N ; Omer, A ; Philippou, Y ; Harriss, E ; Davies, L ; Chow, K ; Chetta, PM ; Erickson, A ; Rajakumar, T ; Mills, IG ; Bryant, RJ ; Hamdy, FC ; Murphy, DG ; Loda, M ; Hovens, CM ; Corcoran, NM ; Verrill, C ; Lamb, AD (WILEY, 2021-01)
    CONTEXT: Ductal adenocarcinoma (DAC) is relatively rare, but is nonetheless the second most common subtype of prostate cancer. First described in 1967, opinion is still divided regarding its biology, prognosis, and outcome. OBJECTIVES: To systematically interrogate the literature to clarify the epidemiology, diagnosis, management, progression, and survival statistics of DAC. MATERIALS AND METHODS: We conducted a literature search of five medical databases from inception to May 04 2020 according to PRISMA criteria using search terms "prostate ductal adenocarcinoma" OR "endometriod adenocarcinoma of prostate" and variations of each. RESULTS: Some 114 studies were eligible for inclusion, presenting 2 907 170 prostate cancer cases, of which 5911 were DAC. [Correction added on 16 January 2021 after the first online publication: the preceding statement has been corrected in this current version.] DAC accounts for 0.17% of prostate cancer on meta-analysis (range 0.0837%-13.4%). The majority of DAC cases were admixed with predominant acinar adenocarcinoma (AAC). Median Prostate Specific Antigen at diagnosis ranged from 4.2 to 9.6 ng/mL in the case series.DAC was more likely to present as T3 (RR1.71; 95%CI 1.53-1.91) and T4 (RR7.56; 95%CI 5.19-11.01) stages, with far higher likelihood of metastatic disease (RR4.62; 95%CI 3.84-5.56; all P-values < .0001), compared to AAC. Common first treatments included surgery (radical prostatectomy (RP) or cystoprostatectomy for select cases) or radiotherapy (RT) for localized disease, and hormonal or chemo-therapy for metastatic disease. Few studies compared RP and RT modalities, and those that did present mixed findings, although cancer-specific survival rates seem worse after RP.Biochemical recurrence rates were increased with DAC compared to AAC. Additionally, DAC metastasized to unusual sites, including penile and peritoneal metastases. Where compared, all studies reported worse survival for DAC compared to AAC. CONCLUSION: When drawing conclusions about DAC it is important to note the heterogenous nature of the data. DAC is often diagnosed incidentally post-treatment, perhaps due to lack of a single, universally applied histopathological definition. As such, DAC is likely underreported in clinical practice and the literature. Poorer prognosis and outcomes for DAC compared to AAC merit further research into genetic composition, evolution, diagnosis, and treatment of this surprisingly common prostate cancer sub-type. PATIENT SUMMARY: Ductal prostate cancer is a rare but important form of prostate cancer. This review demonstrates that it tends to be more serious at detection and more likely to spread to unusual parts of the body. Overall survival is worse with this type of prostate cancer and urologists need to be aware of the presence of ductal prostate cancer to alter management decisions and follow-up.
  • Item
    Thumbnail Image
    Use of prostate-specific membrane antigen positron-emission tomography/CT in response assessment following upfront chemohormonal therapy in metastatic prostate cancer
    Anton, A ; Kamel Hasan, O ; Ballok, Z ; Bowden, P ; Costello, AJ ; Harewood, L ; Corcoran, NM ; Dundee, P ; Peters, JS ; Lawrentschuk, N ; Troy, A ; Webb, D ; Chan, Y ; See, A ; Siva, S ; Murphy, D ; Hofman, MS ; Tran, B (WILEY, 2020-10)
  • Item
    Thumbnail Image
    Error rates in a clinical data repository: lessons from the transition to electronic data transfer - a descriptive study
    Hong, MKH ; Yao, HHI ; Pedersen, JS ; Peters, JS ; Costello, AJ ; Murphy, DG ; Hovens, CM ; Corcoran, NM (BMJ PUBLISHING GROUP, 2013)
    OBJECTIVE: Data errors are a well-documented part of clinical datasets as is their potential to confound downstream analysis. In this study, we explore the reliability of manually transcribed data across different pathology fields in a prostate cancer database and also measure error rates attributable to the source data. DESIGN: Descriptive study. SETTING: Specialist urology service at a single centre in metropolitan Victoria in Australia. PARTICIPANTS: Between 2004 and 2011, 1471 patients underwent radical prostatectomy at our institution. In a large proportion of these cases, clinicopathological variables were recorded by manual data-entry. In 2011, we obtained electronic versions of the same printed pathology reports for our cohort. The data were electronically imported in parallel to any existing manual entry record enabling direct comparison between them. OUTCOME MEASURES: Error rates of manually entered data compared with electronically imported data across clinicopathological fields. RESULTS: 421 patients had at least 10 comparable pathology fields between the electronic import and manual records and were selected for study. 320 patients had concordant data between manually entered and electronically populated fields in a median of 12 pathology fields (range 10-13), indicating an outright accuracy in manually entered pathology data in 76% of patients. Across all fields, the error rate was 2.8%, while individual field error ranges from 0.5% to 6.4%. Fields in text formats were significantly more error-prone than those with direct measurements or involving numerical figures (p<0.001). 971 cases were available for review of error within the source data, with figures of 0.1-0.9%. CONCLUSIONS: While the overall rate of error was low in manually entered data, individual pathology fields were variably prone to error. High-quality pathology data can be obtained for both prospective and retrospective parts of our data repository and the electronic checking of source pathology data for error is feasible.