Surgery (RMH) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 8 of 8
  • Item
    Thumbnail Image
    Autophagy Induction Is a Tor- and Tp53-Independent Cell Survival Response in a Zebrafish Model of Disrupted Ribosome Biogenesis
    Boglev, Y ; Badrock, AP ; Trotter, AJ ; Du, Q ; Richardson, EJ ; Parslow, AC ; Markmiller, SJ ; Hall, NE ; de Jong-Curtain, TA ; Ng, AY ; Verkade, H ; Ober, EA ; Field, HA ; Shin, D ; Shin, CH ; Hannan, KM ; Hannan, RD ; Pearson, RB ; Kim, S-H ; Ess, KC ; Lieschke, GJ ; Stainier, DYR ; Heath, JK ; Trainor, PA (PUBLIC LIBRARY SCIENCE, 2013-02)
    Ribosome biogenesis underpins cell growth and division. Disruptions in ribosome biogenesis and translation initiation are deleterious to development and underlie a spectrum of diseases known collectively as ribosomopathies. Here, we describe a novel zebrafish mutant, titania (tti(s450)), which harbours a recessive lethal mutation in pwp2h, a gene encoding a protein component of the small subunit processome. The biochemical impacts of this lesion are decreased production of mature 18S rRNA molecules, activation of Tp53, and impaired ribosome biogenesis. In tti(s450), the growth of the endodermal organs, eyes, brain, and craniofacial structures is severely arrested and autophagy is up-regulated, allowing intestinal epithelial cells to evade cell death. Inhibiting autophagy in tti(s450) larvae markedly reduces their lifespan. Somewhat surprisingly, autophagy induction in tti(s450) larvae is independent of the state of the Tor pathway and proceeds unabated in Tp53-mutant larvae. These data demonstrate that autophagy is a survival mechanism invoked in response to ribosomal stress. This response may be of relevance to therapeutic strategies aimed at killing cancer cells by targeting ribosome biogenesis. In certain contexts, these treatments may promote autophagy and contribute to cancer cells evading cell death.
  • Item
    Thumbnail Image
    Mediator Subunit 12 Is Required for Neutrophil Development in Zebrafish
    Keightley, M-C ; Layton, JE ; Hayman, JW ; Heath, JK ; Lieschke, GJ ; Wen, Z (PUBLIC LIBRARY SCIENCE, 2011-08-25)
    Hematopoiesis requires the spatiotemporal organization of regulatory factors to successfully orchestrate diverse lineage specificity from stem and progenitor cells. Med12 is a regulatory component of the large Mediator complex that enables contact between the general RNA polymerase II transcriptional machinery and enhancer bound regulatory factors. We have identified a new zebrafish med12 allele, syr, with a single missense mutation causing a valine to aspartic acid change at position 1046. Syr shows defects in hematopoiesis, which predominantly affect the myeloid lineage. Syr has identified a hematopoietic cell-specific requirement for Med12, suggesting a new role for this transcriptional regulator.
  • Item
    Thumbnail Image
    Genetic Dissection of Differential Signaling Threshold Requirements for the Wnt/β-Catenin Pathway In Vivo
    Buchert, M ; Athineos, D ; Abud, HE ; Burke, ZD ; Faux, MC ; Samuel, MS ; Jarnicki, AG ; Winbanks, CE ; Newton, IP ; Meniel, VS ; Suzuki, H ; Stacker, SA ; Nathke, IS ; Tosh, D ; Huelsken, J ; Clarke, AR ; Heath, JK ; Sansom, OJ ; Ernst, M ; Nusse, R (PUBLIC LIBRARY SCIENCE, 2010-01)
    Contributions of null and hypomorphic alleles of Apc in mice produce both developmental and pathophysiological phenotypes. To ascribe the resulting genotype-to-phenotype relationship unambiguously to the Wnt/beta-catenin pathway, we challenged the allele combinations by genetically restricting intracellular beta-catenin expression in the corresponding compound mutant mice. Subsequent evaluation of the extent of resulting Tcf4-reporter activity in mouse embryo fibroblasts enabled genetic measurement of Wnt/beta-catenin signaling in the form of an allelic series of mouse mutants. Different permissive Wnt signaling thresholds appear to be required for the embryonic development of head structures, adult intestinal polyposis, hepatocellular carcinomas, liver zonation, and the development of natural killer cells. Furthermore, we identify a homozygous Apc allele combination with Wnt/beta-catenin signaling capacity similar to that in the germline of the Apc(min) mice, where somatic Apc loss-of-heterozygosity triggers intestinal polyposis, to distinguish whether co-morbidities in Apc(min) mice arise independently of intestinal tumorigenesis. Together, the present genotype-phenotype analysis suggests tissue-specific response levels for the Wnt/beta-catenin pathway that regulate both physiological and pathophysiological conditions.
  • Item
    Thumbnail Image
    Quantitative intratumoural microdistribution and kinetics of 131I-huA33 antibody in patients with colorectal carcinoma
    Ciprotti, M ; Chong, G ; Gan, HK ; Chan, A ; Murone, C ; MacGregor, D ; Lee, F-T ; Johns, TG ; Heath, JK ; Ernst, M ; Burgess, AW ; Scott, AM (SPRINGEROPEN, 2014-05-30)
    BACKGROUND: The ability of recombinant antibodies to adequately penetrate into tumours is a key factor in achieving therapeutic effect; however, the behaviour of antibodies at a cellular level in tumours is poorly understood. The purpose of this study was to investigate those factors that influence the macroscopic and microscopic intratumoural distribution of an IgG1-humanized antibody, huA33, in colorectal tumours. METHODS: Twelve patients were infused with radiolabelled huA33 at 7 days prior to elective surgery for colorectal carcinoma. Macroscopic huA33 uptake was determined by both gamma well counter and autoradiography measurements of the resected tumour specimens. Microscopic uptake was then quantitated at a cellular level and compared to vascular penetrance. The impact of variation in tumour antigen (GPA33) expression, tumour size, specimen type (primary vs metastatic), presence of macroscopic necrosis, and tumour vasculature on huA33 uptake were examined. RESULTS: The I-huA33 uptake in whole tumour sections was (mean ± SD) 5.13 ± 2.71 × 10(-3)% injected dose per gram (ID/g). GPA33 was expressed in all viable tumour cells, and huA33 uptake was excellent regardless of tumour size and specimen type. In tumours with macroscopically evident central necrosis (n = 5), huA33 uptake in tumour necrotic centres was lower than in viable peripheries (0.606 ± 0.493 vs 2.98 ± 2.17 × 10(-3)%ID, p = 0.06). However, when corrected for low cell viability in necrotic centres, uptake of huA33 at the cellular level was highly comparable to that in the more viable tumour periphery (7.10 ± 5.10 × 10(-9) vs 3.82 ± 3.67 × 10(-9)%ID/cell, p = 0.4). In the five patients who exhibited macroscopic necrosis in their tumours, huA33 showed excellent tissue penetration, with a maximum penetration distance of 26 μm in peripheral tumour regions and 118 μm in central regions. No correlation was observed between (131)I-huA33 uptake in tumour on a cellular basis and tumour vascularity. CONCLUSIONS: In patients with colorectal carcinoma, monoclonal antibody huA33 effectively targets viable tumour cells in all cellular milieus examined, including effective penetration into necrotic tumour centres, a novel and therapeutically important finding.
  • Item
    Thumbnail Image
    Physiological expression of the PI3K-activating mutation Pik3caH1047R combines with Apc loss to promote development of invasive intestinal adenocarcinomas in mice
    Hare, LM ; Phesse, TJ ; Waring, PM ; Montgomery, KG ; Kinross, KM ; Mills, K ; Roh, V ; Heath, JK ; Ramsay, RG ; Ernst, M ; Phillips, WA (PORTLAND PRESS LTD, 2014-03-01)
    PIK3CA, the gene encoding the p110α catalytic subunit of PI3K (phosphoinositide 3-kinase), is mutated in approximately 20% of sporadic CRCs (colorectal cancers), but the role of these mutations in the pathogenesis of CRC remains unclear. In the present study we used a novel mouse model to investigate the role of the Pik3caH1047R mutation, the most common PIK3CA mutation in CRC, during the development and progression of intestinal cancer. Our results demonstrate that Pik3caH1047R, when expressed at physiological levels, is insufficient to initiate intestinal tumorigenesis; however, in the context of Apc (adenomatous polyposis coli) loss, which is observed in 80% of CRCs and by itself results in benign intestinal adenomas, the Pik3caH1047R mutation promotes the development of highly aggressive and invasive adenocarcinomas in both the small and large intestines. The results of the present study show that an activating Pik3ca mutation can act in tandem with Apc loss to drive the progression of gastrointestinal cancer and thus this disease may be susceptible to therapeutic targeting using PI3K pathway inhibitors.
  • Item
    Thumbnail Image
    Capsosomes with Multilayered Subcompartments: Assembly and Loading with Hydrophobic Cargo
    Hosta-Rigau, L ; Staedler, B ; Yan, Y ; Nice, EC ; Heath, JK ; Albericio, F ; Caruso, F (WILEY-V C H VERLAG GMBH, 2010-01-08)
    Abstract Therapeutic artificial cells or organelles are nanoengineered vehicles that are expected to substitute for missing or lost cellular function. The creation of capsosomes, polymer carrier capsules containing liposomal subcompartments, is a promising approach towards constructing such therapeutic devices using the layer‐by‐layer assembly method. Herein, the assembly of intact, nonaggregated capsosomes containing multiple liposome layers is reported. It is also further demonstrated that thiocoraline, a hydrophobic model peptide with antitumor activity, can be efficiently loaded into the membrane of the liposomal subcompartments of the capsosomes. Cell viability assays verify the activity of the trapped antitumor cargo. It is also shown that pristine capsosomes do not display inherent cytotoxic effects. The ability to tune the number of liposome layers and hence the drug loading in capsosomes as well as their noncytotoxicity provide new opportunities for the creation of therapeutic artificial cells and organelles.
  • Item
    Thumbnail Image
    Bypassing Multidrug Resistance in Cancer Cells with Biodegradable Polymer Capsules
    Yan, Y ; Ochs, CJ ; Such, GK ; Heath, JK ; Nice, EC ; Caruso, F (WILEY-V C H VERLAG GMBH, 2010-12-14)
  • Item
    Thumbnail Image
    Targeting Cancer Cells: Controlling the Binding and Internalization of Antibody-Functionalized Capsules
    Johnston, APR ; Kamphuis, MMJ ; Such, GK ; Scott, AM ; Nice, EC ; Heath, JK ; Caruso, F (AMER CHEMICAL SOC, 2012-08)
    The development of nanoengineered particles, such as polymersomes, liposomes, and polymer capsules, has the potential to offer significant advances in vaccine and cancer therapy. However, the effectiveness of these carriers has the potential to be greatly improved if they can be specifically delivered to target cells. We describe a general method for functionalizing nanoengineered polymer capsules with antibodies using click chemistry and investigate their interaction with cancer cells in vitro. The binding efficiency to cells was found to be dependent on both the capsule-to-cell ratio and the density of antibody on the capsule surface. In mixed cell populations, more than 90% of target cells bound capsules when the capsule-to-target cell ratio was 1:1. Strikingly, greater than 50% of target cells exhibited capsules on the cell surface even when the target cells were present as less than 0.1% of the total cell population. Imaging flow cytometry was used to quantify the internalization of the capsules, and the target cells were found to internalize capsules efficiently. However, the role of the antibody in this process was determined to enhance accumulation of capsules on the cell surface rather than promote endocytosis. This represents a significant finding, as this is the first study into the role antibodies play in internalization of such capsules. It also opens up the possibility of targeting these capsules to cancer cells using targeting molecules that do not trigger an endocytic pathway. We envisage that this approach will be generally applicable to the specific targeting of a variety of nanoengineered materials to cells.