Surgery (RMH) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Repurposing FDA-approved drugs as inhibitors of therapy-induced invadopodia activity in glioblastoma cells
    Jones, D ; Whitehead, CA ; Dinevska, M ; Widodo, SS ; Furst, LM ; Morokoff, AP ; Kaye, AH ; Drummond, KJ ; Mantamadiotis, T ; Stylli, SS (SPRINGER, 2023-06-01)
    Glioblastoma (GBM) is the most prevalent primary central nervous system tumour in adults. The lethality of GBM lies in its highly invasive, infiltrative, and neurologically destructive nature resulting in treatment failure, tumour recurrence and death. Even with current standard of care treatment with surgery, radiotherapy and chemotherapy, surviving tumour cells invade throughout the brain. We have previously shown that this invasive phenotype is facilitated by actin-rich, membrane-based structures known as invadopodia. The formation and matrix degrading activity of invadopodia is enhanced in GBM cells that survive treatment. Drug repurposing provides a means of identifying new therapeutic applications for existing drugs without the need for discovery or development and the associated time for clinical implementation. We investigate several FDA-approved agents for their ability to act as both cytotoxic agents in reducing cell viability and as ‘anti-invadopodia’ agents in GBM cell lines. Based on their cytotoxicity profile, three agents were selected, bortezomib, everolimus and fludarabine, to test their effect on GBM cell invasion. All three drugs reduced radiation/temozolomide-induced invadopodia activity, in addition to reducing GBM cell viability. These drugs demonstrate efficacious properties warranting further investigation with the potential to be implemented as part of the treatment regime for GBM.
  • Item
    Thumbnail Image
    Inhibition of Radiation and Temozolomide-Induced Glioblastoma Invadopodia Activity Using Ion Channel Drugs
    Dinevska, M ; Gazibegovic, N ; Morokoff, AP ; Kaye, AH ; Drummond, KJ ; Mantamadiotis, T ; Stylli, SS (MDPI, 2020-10)
    Glioblastoma (GBM) is the most prevalent and malignant type of primary brain cancer. The rapid invasion and dissemination of tumor cells into the surrounding normal brain is a major driver of tumor recurrence, and long-term survival of GBM patients is extremely rare. Actin-rich cell membrane protrusions known as invadopodia can facilitate the highly invasive properties of GBM cells. Ion channels have been proposed to contribute to a pro-invasive phenotype in cancer cells and may also be involved in the invadopodia activity of GBM cells. GBM cell cytotoxicity screening of several ion channel drugs identified three drugs with potent cell killing efficacy: flunarizine dihydrochloride, econazole nitrate, and quinine hydrochloride dihydrate. These drugs demonstrated a reduction in GBM cell invadopodia activity and matrix metalloproteinase-2 (MMP-2) secretion. Importantly, the treatment of GBM cells with these drugs led to a significant reduction in radiation/temozolomide-induced invadopodia activity. The dual cytotoxic and anti-invasive efficacy of these agents merits further research into targeting ion channels to reduce GBM malignancy, with a potential for future clinical translation in combination with the standard therapy.
  • Item
    Thumbnail Image
    Inhibition of Radiation and Temozolomide-Induced Invadopodia Activity in Glioma Cells Using FDA-Approved Drugs
    Whitehead, CA ; Nguyen, HPT ; Morokoff, AP ; Luwor, RB ; Paradiso, L ; Kaye, AH ; Mantamadiotis, T ; Stylli, SS (ELSEVIER SCIENCE INC, 2018-12)
    The most common primary central nervous system tumor in adults is the glioblastoma multiforme (GBM). The highly invasive nature of GBM cells is a significant factor resulting in the inevitable tumor recurrence and poor patient prognosis. Tumor cells utilize structures known as invadopodia to faciliate their invasive phenotype. In this study, utilizing an array of techniques, including gelatin matrix degradation assays, we show that GBM cell lines can form functional gelatin matrix degrading invadopodia and secrete matrix metalloproteinase 2 (MMP-2), a known invadopodia-associated matrix-degrading enzyme. Furthermore, these cellular activities were augmented in cells that survived radiotherapy and temozolomide treatment, indicating that surviving cells may possess a more invasive phenotype posttherapy. We performed a screen of FDA-approved agents not previously used for treating GBM patients with the aim of investigating their "anti-invadopodia" and cytotoxic effects in GBM cell lines and identified a number that reduced cell viability, as well as agents which also reduced invadopodia activity. Importantly, two of these, pacilitaxel and vinorelbine tartrate, reduced radiation/temozolomide-induced invadopodia activity. Our data demonstrate the value of testing previously approved drugs (repurposing) as potential adjuvant agents for the treatment of GBM patients to reduce invadopodia activity, inhibit GBM cell invasion, and potentially improve patient outcome.