Surgery (RMH) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    No Preview Available
    Complementarity and redundancy of IL-22-producing innate lymphoid cells
    Rankin, LC ; Girard-Madoux, MJH ; Seillet, C ; Mielke, LA ; Kerdiles, Y ; Fenis, A ; Wieduwild, E ; Putoczki, T ; Mondot, S ; Lantz, O ; Demon, D ; Papenfuss, AT ; Smyth, GK ; Lamkanfi, M ; Carotta, S ; Renauld, J-C ; Shi, W ; Carpentier, S ; Soos, T ; Arendt, C ; Ugolini, S ; Huntington, ND ; Bez, GT ; Vivier, E (NATURE PUBLISHING GROUP, 2016-02)
    Intestinal T cells and group 3 innate lymphoid cells (ILC3 cells) control the composition of the microbiota and gut immune responses. Within the gut, ILC3 subsets coexist that either express or lack the natural cytoxicity receptor (NCR) NKp46. We identified here the transcriptional signature associated with the transcription factor T-bet-dependent differentiation of NCR(-) ILC3 cells into NCR(+) ILC3 cells. Contrary to the prevailing view, we found by conditional deletion of the key ILC3 genes Stat3, Il22, Tbx21 and Mcl1 that NCR(+) ILC3 cells were redundant for the control of mouse colonic infection with Citrobacter rodentium in the presence of T cells. However, NCR(+) ILC3 cells were essential for cecal homeostasis. Our data show that interplay between intestinal ILC3 cells and adaptive lymphocytes results in robust complementary failsafe mechanisms that ensure gut homeostasis.
  • Item
    Thumbnail Image
    Mouse models for gastric cancer: Matching models to biological questions
    Poh, AR ; O'Donoghue, RJJ ; Ernst, M ; Putoczki, TL (WILEY, 2016-07)
    Gastric cancer is the third leading cause of cancer-related mortality worldwide. This is in part due to the asymptomatic nature of the disease, which often results in late-stage diagnosis, at which point there are limited treatment options. Even when treated successfully, gastric cancer patients have a high risk of tumor recurrence and acquired drug resistance. It is vital to gain a better understanding of the molecular mechanisms underlying gastric cancer pathogenesis to facilitate the design of new-targeted therapies that may improve patient survival. A number of chemically and genetically engineered mouse models of gastric cancer have provided significant insight into the contribution of genetic and environmental factors to disease onset and progression. This review outlines the strengths and limitations of current mouse models of gastric cancer and their relevance to the pre-clinical development of new therapeutics.
  • Item
    Thumbnail Image
    Granzyme M has a critical role in providing innate immune protection in ulcerative colitis
    Souza-Fonseca-Guimaraes, F ; Krasnova, Y ; Putoczki, T ; Miles, K ; MacDonald, KP ; Town, L ; Shi, W ; Gobe, GC ; McDade, L ; Mielke, LA ; Tye, H ; Masters, SL ; Belz, GT ; Huntington, ND ; Radford-Smith, G ; Smyth, MJ (NATURE PUBLISHING GROUP, 2016-07)
    Inflammatory bowel disease (IBD) is an immunoregulatory disorder, associated with a chronic and inappropriate mucosal immune response to commensal bacteria, underlying disease states such as ulcerative colitis (UC) and Crohn's disease (CD) in humans. Granzyme M (GrzM) is a serine protease expressed by cytotoxic lymphocytes, in particular natural killer (NK) cells. Granzymes are thought to be involved in triggering cell death in eukaryotic target cells; however, some evidence supports their role in inflammation. The role of GrzM in the innate immune response to mucosal inflammation has never been examined. Here, we discover that patients with UC, unlike patients with CD, display high levels of GrzM mRNA expression in the inflamed colon. By taking advantage of well-established models of experimental UC, we revealed that GrzM-deficient mice have greater levels of inflammatory indicators during dextran sulfate sodium (DSS)-induced IBD, including increased weight loss, greater colon length reduction and more severe intestinal histopathology. The absence of GrzM expression also had effects on gut permeability, tissue cytokine/chemokine dynamics, and neutrophil infiltration during disease. These findings demonstrate, for the first time, that GrzM has a critical role during early stages of inflammation in UC, and that in its absence colonic inflammation is enhanced.
  • Item
    Thumbnail Image
    Intestinal-specific activatable Myb initiates colon tumorigenesis in mice
    Malaterre, J ; Pereira, L ; Putoczki, T ; Millen, R ; Paquet-Fifield, S ; Germann, M ; Liu, J ; Cheasley, D ; Sampurno, S ; Stacker, SA ; Achen, MG ; Ward, RL ; Waring, P ; Mantamadiotis, T ; Ernst, M ; Ramsay, RG (NATURE PUBLISHING GROUP, 2016-05-12)
    Transcription factor Myb is overexpressed in most colorectal cancers (CRC). Patients with CRC expressing the highest Myb are more likely to relapse. We previously showed that mono-allelic loss of Myb in an Adenomatous polyposis coli (APC)-driven CRC mouse model (Apc(Min/+)) significantly improves survival. Here we directly investigated the association of Myb with poor prognosis and how Myb co-operates with tumor suppressor genes (TSGs) (Apc) and cell cycle regulator, p27. Here we generated the first intestinal-specific, inducible transgenic model; a MybER transgene encoding a tamoxifen-inducible fusion protein between Myb and the estrogen receptor-α ligand-binding domain driven by the intestinal-specific promoter, Gpa33. This was to mimic human CRC with constitutive Myb activity in a highly tractable mouse model. We confirmed that the transgene was faithfully expressed and inducible in intestinal stem cells (ISCs) before embarking on carcinogenesis studies. Activation of the MybER did not change colon homeostasis unless one p27 allele was lost. We then established that MybER activation during CRC initiation using a pro-carcinogen treatment, azoxymethane (AOM), augmented most measured aspects of ISC gene expression and function and accelerated tumorigenesis in mice. CRC-associated symptoms of patients including intestinal bleeding and anaemia were faithfully mimicked in AOM-treated MybER transgenic mice and implicated hypoxia and vessel leakage identifying an additional pathogenic role for Myb. Collectively, the results suggest that Myb expands the ISC pool within which CRC is initiated while co-operating with TSG loss. Myb further exacerbates CRC pathology partly explaining why high MYB is a predictor of worse patient outcome.