Surgery (RMH) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 11
  • Item
    No Preview Available
    Complementarity and redundancy of IL-22-producing innate lymphoid cells
    Rankin, LC ; Girard-Madoux, MJH ; Seillet, C ; Mielke, LA ; Kerdiles, Y ; Fenis, A ; Wieduwild, E ; Putoczki, T ; Mondot, S ; Lantz, O ; Demon, D ; Papenfuss, AT ; Smyth, GK ; Lamkanfi, M ; Carotta, S ; Renauld, J-C ; Shi, W ; Carpentier, S ; Soos, T ; Arendt, C ; Ugolini, S ; Huntington, ND ; Bez, GT ; Vivier, E (NATURE PUBLISHING GROUP, 2016-02)
    Intestinal T cells and group 3 innate lymphoid cells (ILC3 cells) control the composition of the microbiota and gut immune responses. Within the gut, ILC3 subsets coexist that either express or lack the natural cytoxicity receptor (NCR) NKp46. We identified here the transcriptional signature associated with the transcription factor T-bet-dependent differentiation of NCR(-) ILC3 cells into NCR(+) ILC3 cells. Contrary to the prevailing view, we found by conditional deletion of the key ILC3 genes Stat3, Il22, Tbx21 and Mcl1 that NCR(+) ILC3 cells were redundant for the control of mouse colonic infection with Citrobacter rodentium in the presence of T cells. However, NCR(+) ILC3 cells were essential for cecal homeostasis. Our data show that interplay between intestinal ILC3 cells and adaptive lymphocytes results in robust complementary failsafe mechanisms that ensure gut homeostasis.
  • Item
    Thumbnail Image
    Mouse models for gastric cancer: Matching models to biological questions
    Poh, AR ; O'Donoghue, RJJ ; Ernst, M ; Putoczki, TL (WILEY, 2016-07)
    Gastric cancer is the third leading cause of cancer-related mortality worldwide. This is in part due to the asymptomatic nature of the disease, which often results in late-stage diagnosis, at which point there are limited treatment options. Even when treated successfully, gastric cancer patients have a high risk of tumor recurrence and acquired drug resistance. It is vital to gain a better understanding of the molecular mechanisms underlying gastric cancer pathogenesis to facilitate the design of new-targeted therapies that may improve patient survival. A number of chemically and genetically engineered mouse models of gastric cancer have provided significant insight into the contribution of genetic and environmental factors to disease onset and progression. This review outlines the strengths and limitations of current mouse models of gastric cancer and their relevance to the pre-clinical development of new therapeutics.
  • Item
    Thumbnail Image
    Granzyme M has a critical role in providing innate immune protection in ulcerative colitis
    Souza-Fonseca-Guimaraes, F ; Krasnova, Y ; Putoczki, T ; Miles, K ; MacDonald, KP ; Town, L ; Shi, W ; Gobe, GC ; McDade, L ; Mielke, LA ; Tye, H ; Masters, SL ; Belz, GT ; Huntington, ND ; Radford-Smith, G ; Smyth, MJ (NATURE PUBLISHING GROUP, 2016-07)
    Inflammatory bowel disease (IBD) is an immunoregulatory disorder, associated with a chronic and inappropriate mucosal immune response to commensal bacteria, underlying disease states such as ulcerative colitis (UC) and Crohn's disease (CD) in humans. Granzyme M (GrzM) is a serine protease expressed by cytotoxic lymphocytes, in particular natural killer (NK) cells. Granzymes are thought to be involved in triggering cell death in eukaryotic target cells; however, some evidence supports their role in inflammation. The role of GrzM in the innate immune response to mucosal inflammation has never been examined. Here, we discover that patients with UC, unlike patients with CD, display high levels of GrzM mRNA expression in the inflamed colon. By taking advantage of well-established models of experimental UC, we revealed that GrzM-deficient mice have greater levels of inflammatory indicators during dextran sulfate sodium (DSS)-induced IBD, including increased weight loss, greater colon length reduction and more severe intestinal histopathology. The absence of GrzM expression also had effects on gut permeability, tissue cytokine/chemokine dynamics, and neutrophil infiltration during disease. These findings demonstrate, for the first time, that GrzM has a critical role during early stages of inflammation in UC, and that in its absence colonic inflammation is enhanced.
  • Item
    Thumbnail Image
    ADAM17 is required for EGF-R-induced intestinal tumors via IL-6 trans-signaling
    Schmidt, S ; Schumacher, N ; Schwarz, J ; Tangermann, S ; Kenner, L ; Schlederer, M ; Sibilia, M ; Linder, M ; Altendorf-Hofmann, A ; Knoesel, T ; Gruber, ES ; Oberhuber, G ; Bolik, J ; Rehman, A ; Sinha, A ; Lokau, J ; Arnold, P ; Cabron, A-S ; Zunke, F ; Becker-Pauly, C ; Preaudet, A ; Nguyen, P ; Huynh, J ; Afshar-Sterle, S ; Chand, AL ; Westermann, J ; Dempsey, PJ ; Garbers, C ; Schmidt-Arras, D ; Rosenstiel, P ; Putoczki, T ; Ernst, M ; Rose-John, S (ROCKEFELLER UNIV PRESS, 2018-04)
    Colorectal cancer is treated with antibodies blocking epidermal growth factor receptor (EGF-R), but therapeutic success is limited. EGF-R is stimulated by soluble ligands, which are derived from transmembrane precursors by ADAM17-mediated proteolytic cleavage. In mouse intestinal cancer models in the absence of ADAM17, tumorigenesis was almost completely inhibited, and the few remaining tumors were of low-grade dysplasia. RNA sequencing analysis demonstrated down-regulation of STAT3 and Wnt pathway components. Because EGF-R on myeloid cells, but not on intestinal epithelial cells, is required for intestinal cancer and because IL-6 is induced via EGF-R stimulation, we analyzed the role of IL-6 signaling. Tumor formation was equally impaired in IL-6-/- mice and sgp130Fc transgenic mice, in which only trans-signaling via soluble IL-6R is abrogated. ADAM17 is needed for EGF-R-mediated induction of IL-6 synthesis, which via IL-6 trans-signaling induces β-catenin-dependent tumorigenesis. Our data reveal the possibility of a novel strategy for treatment of colorectal cancer that could circumvent intrinsic and acquired resistance to EGF-R blockade.
  • Item
    Thumbnail Image
    NLRP1 restricts butyrate producing commensals to exacerbate inflammatory bowel disease
    Tye, H ; Yu, C-H ; Simms, LA ; de Zoete, MR ; Kim, ML ; Zakrzewski, M ; Penington, JS ; Harapas, CR ; Souza-Fonseca-Guimaraes, F ; Wockner, LF ; Preaudet, A ; Mielke, LA ; Wilcox, SA ; Ogura, Y ; Corr, SC ; Kanojia, K ; Kouremenos, KA ; De Souza, DP ; McConville, MJ ; Flavell, RA ; Gerlic, M ; Kile, BT ; Papenfuss, AT ; Putoczki, TL ; Radford-Smith, GL ; Masters, SL (NATURE PUBLISHING GROUP, 2018-09-13)
    Anti-microbial signaling pathways are normally triggered by innate immune receptors when detecting pathogenic microbes to provide protective immunity. Here we show that the inflammasome sensor Nlrp1 aggravates DSS-induced experimental mouse colitis by limiting beneficial, butyrate-producing Clostridiales in the gut. The colitis-protective effects of Nlrp1 deficiency are thus reversed by vancomycin treatment, but recapitulated with butyrate supplementation in wild-type mice. Moreover, an activating mutation in Nlrp1a increases IL-18 and IFNγ production, and decreases colonic butyrate to exacerbate colitis. We also show that, in patients with ulcerative colitis, increased NLRP1 in inflamed regions of the colon is associated with increased IFN-γ. In this context, NLRP1, IL-18 or IFN-γ expression negatively correlates with the abundance of Clostridiales in human rectal mucosal biopsies. Our data identify the NLRP1 inflammasome to be a key negative regulator of protective, butyrate-producing commensals, which therefore promotes inflammatory bowel disease.
  • Item
    Thumbnail Image
    TCF-1 limits the formation of Tc17 cells via repression of the MAF-RORγt axis
    Mielke, LA ; Liao, Y ; Clemens, EB ; Firth, MA ; Duckworth, B ; Huang, Q ; Almeida, FF ; Chopin, M ; Koay, H-F ; Bell, CA ; Hediyeh-Zadeh, S ; Park, SL ; Raghu, D ; Choi, J ; Putoczki, TL ; Hodgkin, PD ; Franks, AE ; Mackay, LK ; Godfrey, D ; Davis, MJ ; Xue, H-H ; Bryant, VL ; Kedzierska, K ; Shi, W ; Belz, GT (ROCKEFELLER UNIV PRESS, 2019-07)
    Interleukin (IL)-17-producing CD8+ T (Tc17) cells have emerged as key players in host-microbiota interactions, infection, and cancer. The factors that drive their development, in contrast to interferon (IFN)-γ-producing effector CD8+ T cells, are not clear. Here we demonstrate that the transcription factor TCF-1 (Tcf7) regulates CD8+ T cell fate decisions in double-positive (DP) thymocytes through the sequential suppression of MAF and RORγt, in parallel with TCF-1-driven modulation of chromatin state. Ablation of TCF-1 resulted in enhanced Tc17 cell development and exposed a gene set signature to drive tissue repair and lipid metabolism, which was distinct from other CD8+ T cell subsets. IL-17-producing CD8+ T cells isolated from healthy humans were also distinct from CD8+IL-17- T cells and enriched in pathways driven by MAF and RORγt Overall, our study reveals how TCF-1 exerts central control of T cell differentiation in the thymus by normally repressing Tc17 differentiation and promoting an effector fate outcome.
  • Item
    Thumbnail Image
    SIDT2 RNA Transporter Promotes Lung and Gastrointestinal Tumor Development
    Nguyen, TA ; Bieging-Rolett, KT ; Putoczki, TL ; Wicks, IP ; Attardi, LD ; Pang, KC (CELL PRESS, 2019-10-25)
    RNautophagy is a newly described type of selective autophagy whereby cellular RNAs are transported into lysosomes for degradation. This process involves the transmembrane protein SIDT2, which transports double-stranded RNA (dsRNA) across the endolysosomal membrane. We previously demonstrated that SIDT2 is a transcriptional target of p53, but its role in tumorigenesis, if any, is unclear. Unexpectedly, we show here that Sidt2-/- mice with concurrent oncogenic KrasG12D activation develop significantly fewer tumors than littermate controls in a mouse model of lung adenocarcinoma. Consistent with this observation, loss of SIDT2 also leads to enhanced survival and delayed tumor development in an Apcmin/+ mouse model of intestinal cancer. Within the intestine, Apcmin/+;Sidt2-/- mice display accumulation of dsRNA in association with increased phosphorylation of eIF2α and JNK as well as elevated rates of apoptosis. Taken together, our data demonstrate a role for SIDT2, and by extension RNautophagy, in promoting tumor development.
  • Item
    Thumbnail Image
    Ponatinib: a novel multi-tyrosine kinase inhibitor against human malignancies
    Tan, FH ; Putoczki, TL ; Stylli, SS ; Luwor, RB (DOVE MEDICAL PRESS LTD, 2019)
    Human malignancies are often the result of overexpressed and constitutively active receptor and non-receptor tyrosine kinases, which ultimately lead to the mediation of key tumor-driven pathways. Several tyrosine kinases (ie, EGFR, FGFR, PDGFR, VEGFR), are aberrantly activated in most common tumors, including leukemia, glioblastoma, gastrointestinal stromal tumors, non-small-cell lung cancer, and head and neck cancers. Iclusig™ (ponatinib, previously known as AP24534) is an orally active multi-tyrosine kinase inhibitor and is currently approved by the US Food and Drug Administration for patients with chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia, specifically targeting the BCR-ABL gene mutation, T315I. Due to ponatinib's unique multi-targeted characteristics, further studies have demonstrated its ability to target other important tyrosine kinases (FGFR, PDGFR, SRC, RET, KIT, and FLT1) in other human malignancies. This review focuses on the available data of ponatinib and its molecular targets for treatment in various cancers, with a discussion on the broader potential of this agent in other cancer indications.
  • Item
    Thumbnail Image
    The angiotensin receptor blocker, Losartan, inhibits mammary tumor development and progression to invasive carcinoma
    Coulson, R ; Liew, SH ; Connelly, AA ; Yee, NS ; Deb, S ; Kumar, B ; Vargas, AC ; O'Toole, SA ; Parslow, AC ; Poh, A ; Putoczki, T ; Morrow, RJ ; Alorro, M ; Lazarus, KA ; Yeap, EFW ; Walton, KL ; Harrison, CA ; Hannan, NJ ; George, AJ ; Clyne, CD ; Ernst, M ; Allen, AM ; Chand, AL (IMPACT JOURNALS LLC, 2017-03-21)
    Drugs that target the Renin-Angiotensin System (RAS) have recently come into focus for their potential utility as cancer treatments. The use of Angiotensin Receptor Blockers (ARBs) and Angiotensin-Converting Enzyme (ACE) Inhibitors (ACEIs) to manage hypertension in cancer patients is correlated with improved survival outcomes for renal, prostate, breast and small cell lung cancer. Previous studies demonstrate that the Angiotensin Receptor Type I (AT1R) is linked to breast cancer pathogenesis, with unbiased analysis of gene-expression studies identifying significant up-regulation of AGTR1, the gene encoding AT1R in ER+ve/HER2-ve tumors correlating with poor prognosis. However, there is no evidence, so far, of the functional contribution of AT1R to breast tumorigenesis. We explored the potential therapeutic benefit of ARB in a carcinogen-induced mouse model of breast cancer and clarified the mechanisms associated with its success.Mammary tumors were induced with 7,12-dimethylbenz[α]antracene (DMBA) and medroxyprogesterone acetate (MPA) in female wild type mice and the effects of the ARB, Losartan treatment assessed in a preventative setting (n = 15 per group). Tumor histopathology was characterised by immunohistochemistry, real-time qPCR to detect gene expression signatures, and tumor cytokine levels measured with quantitative bioplex assays. AT1R was detected with radiolabelled ligand binding assays in fresh frozen tumor samples.We showed that therapeutic inhibition of AT1R, with Losartan, resulted in a significant reduction in tumor burden; and no mammary tumor incidence in 20% of animals. We observed a significant reduction in tumor progression from DCIS to invasive cancer with Losartan treatment. This was associated with reduced tumor cell proliferation and a significant reduction in IL-6, pSTAT3 and TNFα levels. Analysis of tumor immune cell infiltrates, however, demonstrated no significant differences in the recruitment of lymphocytes or tumour-associated macrophages in Losartan or vehicle-treated mammary tumors.Analysis of AT1R expression with radiolabelled ligand binding assays in human breast cancer biopsies showed high AT1R levels in 30% of invasive ductal carcinomas analysed. Furthermore, analysis of the TCGA database identified that high AT1R expression to be associated with luminal breast cancer subtype.Our in vivo data and analysis of human invasive ductal carcinoma samples identify the AT1R is a potential therapeutic target in breast cancer, with the availability of a range of well-tolerated inhibitors currently used in clinics. We describe a novel signalling pathway critical in breast tumorigenesis, that may provide new therapeutic avenues to complement current treatments.
  • Item
    Thumbnail Image
    Ponatinib Inhibits Multiple Signaling Pathways Involved in STAT3 Signaling and Attenuates Colorectal Tumor Growth
    Tan, FH ; Putoczki, TL ; Lou, J ; Hinde, E ; Hollande, F ; Giraud, J ; Stylli, SS ; Paradiso, L ; Zhu, H-J ; Sieber, OM ; Luwor, RB (MDPI, 2018-12)
    Signal transducer and activator of transcription 3 (STAT3) signaling is a major driver of colorectal cancer (CRC) growth, however therapeutics, which can effectively target this pathway, have so far remained elusive. Here, we performed an extensive screen for STAT3 inhibitors among a library of 1167 FDA-approved agents, identifying Ponatinib as a lead candidate. We found that Ponatinib inhibits STAT3 activity driven by EGF/EGFR, IL-6/IL-6R and IL-11/IL-11R, three major ligand/receptor systems involved in CRC development and progression. Ponatinib was able to inhibit CRC migration and tumor growth in vivo. In addition, Ponatinib displayed a greater ability to inhibit STAT3 activity and mediated superior anti-proliferative efficacy compared to five FDA approved SRC and Janus Kinase (JAK) inhibitors. Finally, long-term exposure of CRC cells to Ponatinib, Dasatinib and Bosutinib resulted in acquired resistance to Dasatinib and Bosutinib occurring within six weeks. However, acquired resistance to Ponatinib was observed after long-term exposure of >4 months. Overall, our results identify a novel anti-STAT3 property of Ponatinib and thus, Ponatinib offers a potential therapeutic strategy for CRC.