Finance - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Indirect reciprocity is sensitive to costs of information transfer.
    Suzuki, S ; Kimura, H (Springer Science and Business Media LLC, 2013)
    How natural selection can promote cooperative or altruistic behavior is a fundamental question in biological and social sciences. One of the persuasive mechanisms is "indirect reciprocity," working through reputation: cooperative behavior can prevail because the behavior builds the donor's good reputation and then s/he receives some reciprocal benefits from someone else in the community. However, an important piece missed in the previous studies is that the reputation-building process requires substantial cognitive abilities such as communication skills, potentially causing a loss of biological fitness. Here, by mathematical analyses and individual-based computer simulations, we show that natural selection never favors indirect reciprocal cooperation in the presence of the cost of reputation building, regardless of the cost-to-benefit ratio of cooperation or moral assessment rules (social norms). Our results highlight the importance of considering the cost of high-level cognitive abilities in studies of the evolution of humans' and animals' social behavior.
  • Item
    Thumbnail Image
    Collective chasing behavior between cooperators and defectors in the spatial prisoner's dilemma.
    Ichinose, G ; Saito, M ; Suzuki, S ; Holme, P (Public Library of Science (PLoS), 2013)
    Cooperation is one of the essential factors for all biological organisms in major evolutionary transitions. Recent studies have investigated the effect of migration for the evolution of cooperation. However, little is known about whether and how an individuals' cooperativeness coevolves with mobility. One possibility is that mobility enhances cooperation by enabling cooperators to escape from defectors and form clusters; the other possibility is that mobility inhibits cooperation by helping the defectors to catch and exploit the groups of cooperators. In this study we investigate the coevolutionary dynamics by using the prisoner's dilemma game model on a lattice structure. The computer simulations demonstrate that natural selection maintains cooperation in the form of evolutionary chasing between the cooperators and defectors. First, cooperative groups grow and collectively move in the same direction. Then, mutant defectors emerge and invade the cooperative groups, after which the defectors exploit the cooperators. Then other cooperative groups emerge due to mutation and the cycle is repeated. Here, it is worth noting that, as a result of natural selection, the mobility evolves towards directional migration, but not to random or completely fixed migration. Furthermore, with directional migration, the rate of global population extinction is lower when compared with other cases without the evolution of mobility (i.e., when mobility is preset to random or fixed). These findings illustrate the coevolutionary dynamics of cooperation and mobility through the directional chasing between cooperators and defectors.