Finance - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 7 of 7
  • Item
    No Preview Available
    Modeling the Evolution of Beliefs Using an Attentional Focus Mechanism
    Markovic, D ; Glaescher, J ; Bossaerts, P ; O'Doherty, J ; Kiebel, SJ ; Einhäuser, W (PUBLIC LIBRARY SCIENCE, 2015-10)
    For making decisions in everyday life we often have first to infer the set of environmental features that are relevant for the current task. Here we investigated the computational mechanisms underlying the evolution of beliefs about the relevance of environmental features in a dynamical and noisy environment. For this purpose we designed a probabilistic Wisconsin card sorting task (WCST) with belief solicitation, in which subjects were presented with stimuli composed of multiple visual features. At each moment in time a particular feature was relevant for obtaining reward, and participants had to infer which feature was relevant and report their beliefs accordingly. To test the hypothesis that attentional focus modulates the belief update process, we derived and fitted several probabilistic and non-probabilistic behavioral models, which either incorporate a dynamical model of attentional focus, in the form of a hierarchical winner-take-all neuronal network, or a diffusive model, without attention-like features. We used Bayesian model selection to identify the most likely generative model of subjects' behavior and found that attention-like features in the behavioral model are essential for explaining subjects' responses. Furthermore, we demonstrate a method for integrating both connectionist and Bayesian models of decision making within a single framework that allowed us to infer hidden belief processes of human subjects.
  • Item
    Thumbnail Image
    Evidence for Model-based Computations in the Human Amygdala during Pavlovian Conditioning
    Prevost, C ; McNamee, D ; Jessup, RK ; Bossaerts, P ; O'Doherty, JP ; Sporns, O (PUBLIC LIBRARY SCIENCE, 2013-02)
    Contemporary computational accounts of instrumental conditioning have emphasized a role for a model-based system in which values are computed with reference to a rich model of the structure of the world, and a model-free system in which values are updated without encoding such structure. Much less studied is the possibility of a similar distinction operating at the level of Pavlovian conditioning. In the present study, we scanned human participants while they participated in a Pavlovian conditioning task with a simple structure while measuring activity in the human amygdala using a high-resolution fMRI protocol. After fitting a model-based algorithm and a variety of model-free algorithms to the fMRI data, we found evidence for the superiority of a model-based algorithm in accounting for activity in the amygdala compared to the model-free counterparts. These findings support an important role for model-based algorithms in describing the processes underpinning Pavlovian conditioning, as well as providing evidence of a role for the human amygdala in model-based inference.
  • Item
    Thumbnail Image
    Do not bet on the unknown versus try to find out more: estimation uncertainty and "unexpected uncertainty" both modulate exploration
    Payzan-LeNestour, E ; Bossaerts, P (FRONTIERS RESEARCH FOUNDATION, 2012)
    Little is known about how humans solve the exploitation/exploration trade-off. In particular, the evidence for uncertainty-driven exploration is mixed. The current study proposes a novel hypothesis of exploration that helps reconcile prior findings that may seem contradictory at first. According to this hypothesis, uncertainty-driven exploration involves a dilemma between two motives: (i) to speed up learning about the unknown, which may beget novel reward opportunities; (ii) to avoid the unknown because it is potentially dangerous. We provide evidence for our hypothesis using both behavioral and simulated data, and briefly point to recent evidence that the brain differentiates between these two motives.
  • Item
    Thumbnail Image
    The chronometry of risk processing in the human cortex
    Symmonds, M ; Moran, RJ ; Wright, ND ; Bossaerts, P ; Barnes, G ; Dolan, RJ (FRONTIERS MEDIA SA, 2013)
    The neuroscience of human decision-making has focused on localizing brain activity correlating with decision variables and choice, most commonly using functional MRI (fMRI). Poor temporal resolution means these studies are agnostic in relation to how decisions unfold in time. Consequently, here we address the temporal evolution of neural activity related to encoding of risk using magnetoencephalography (MEG), and show modulations of electromagnetic power in posterior parietal and dorsomedial prefrontal cortex (DMPFC) which scale with both variance and skewness in a lottery, detectable within 500 ms following stimulus presentation. Electromagnetic responses in somatosensory cortex following this risk encoding predict subsequent choices. Furthermore, within anterior insula we observed early and late effects of subject-specific risk preferences, suggestive of a role in both risk assessment and risk anticipation during choice. The observation that cortical activity tracks specific and independent components of risk from early time-points in a decision-making task supports the hypothesis that specialized brain circuitry underpins risk perception.
  • Item
    Thumbnail Image
    Activity in Inferior Parietal and Medial Prefrontal Cortex Signals the Accumulation of Evidence in a Probability Learning Task
    d'Acremont, M ; Fornari, E ; Bossaerts, P ; Behrens, T (PUBLIC LIBRARY SCIENCE, 2013-01)
    In an uncertain environment, probabilities are key to predicting future events and making adaptive choices. However, little is known about how humans learn such probabilities and where and how they are encoded in the brain, especially when they concern more than two outcomes. During functional magnetic resonance imaging (fMRI), young adults learned the probabilities of uncertain stimuli through repetitive sampling. Stimuli represented payoffs and participants had to predict their occurrence to maximize their earnings. Choices indicated loss and risk aversion but unbiased estimation of probabilities. BOLD response in medial prefrontal cortex and angular gyri increased linearly with the probability of the currently observed stimulus, untainted by its value. Connectivity analyses during rest and task revealed that these regions belonged to the default mode network. The activation of past outcomes in memory is evoked as a possible mechanism to explain the engagement of the default mode network in probability learning. A BOLD response relating to value was detected only at decision time, mainly in striatum. It is concluded that activity in inferior parietal and medial prefrontal cortex reflects the amount of evidence accumulated in favor of competing and uncertain outcomes.
  • Item
    Thumbnail Image
    In the Mind of the Market: Theory of Mind Biases Value Computation during Financial Bubbles
    De Martino, B ; O'Doherty, JP ; Ray, D ; Bossaerts, P ; Camerer, C (CELL PRESS, 2013-09-18)
    The ability to infer intentions of other agents, called theory of mind (ToM), confers strong advantages for individuals in social situations. Here, we show that ToM can also be maladaptive when people interact with complex modern institutions like financial markets. We tested participants who were investing in an experimental bubble market, a situation in which the price of an asset is much higher than its underlying fundamental value. We describe a mechanism by which social signals computed in the dorsomedial prefrontal cortex affect value computations in ventromedial prefrontal cortex, thereby increasing an individual's propensity to 'ride' financial bubbles and lose money. These regions compute a financial metric that signals variations in order flow intensity, prompting inference about other traders' intentions. Our results suggest that incorporating inferences about the intentions of others when making value judgments in a complex financial market could lead to the formation of market bubbles.
  • Item
    Thumbnail Image
    Chimpanzee choice rates in competitive games match equilibrium game theory predictions
    Martin, CF ; Bhui, R ; Bossaerts, P ; Matsuzawa, T ; Camerer, C (NATURE PORTFOLIO, 2014-06-05)
    The capacity for strategic thinking about the payoff-relevant actions of conspecifics is not well understood across species. We use game theory to make predictions about choices and temporal dynamics in three abstract competitive situations with chimpanzee participants. Frequencies of chimpanzee choices are extremely close to equilibrium (accurate-guessing) predictions, and shift as payoffs change, just as equilibrium theory predicts. The chimpanzee choices are also closer to the equilibrium prediction, and more responsive to past history and payoff changes, than two samples of human choices from experiments in which humans were also initially uninformed about opponent payoffs and could not communicate verbally. The results are consistent with a tentative interpretation of game theory as explaining evolved behavior, with the additional hypothesis that chimpanzees may retain or practice a specialized capacity to adjust strategy choice during competition to perform at least as well as, or better than, humans have.