Finance - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    Thumbnail Image
    Dissociating neural variability related to stimulus quality and response times in perceptual decision-making
    Bode, S ; Bennett, D ; Sewell, DK ; Paton, B ; Egan, GF ; Smith, PL ; Murawski, C (Elsevier, 2018-03-01)
    According to sequential sampling models, perceptual decision-making is based on accumulation of noisy evidence towards a decision threshold. The speed with which a decision is reached is determined by both the quality of incoming sensory information and random trial-by-trial variability in the encoded stimulus representations. To investigate those decision dynamics at the neural level, participants made perceptual decisions while functional magnetic resonance imaging (fMRI) was conducted. On each trial, participants judged whether an image presented under conditions of high, medium, or low visual noise showed a piano or a chair. Higher stimulus quality (lower visual noise) was associated with increased activation in bilateral medial occipito-temporal cortex and ventral striatum. Lower stimulus quality was related to stronger activation in posterior parietal cortex (PPC) and dorsolateral prefrontal cortex (DLPFC). When stimulus quality was fixed, faster response times were associated with a positive parametric modulation of activation in medial prefrontal and orbitofrontal cortex, while slower response times were again related to more activation in PPC, DLPFC and insula. Our results suggest that distinct neural networks were sensitive to the quality of stimulus information, and to trial-to-trial variability in the encoded stimulus representations, but that reaching a decision was a consequence of their joint activity.
  • Item
    Thumbnail Image
    Monetary feedback modulates performance and electrophysiological indices of belief updating in reward learning.
    Bennett, D ; Sasmita, K ; Maloney, RT ; Murawski, C ; Bode, S (Wiley, 2019-07-05)
    Belief updating entails the incorporation of new information about the environment into internal models of the world. Bayesian inference is the statistically optimal strategy for performing belief updating in the presence of uncertainty. An important open question is whether the use of cognitive strategies that implement Bayesian inference is dependent upon motivational state and, if so, how this is reflected in electrophysiological signatures of belief updating in the brain. Here, we recorded the EEG of participants performing a simple reward learning task with both monetary and nonmonetary instructive feedback conditions. Our aim was to distinguish the influence of the rewarding properties of feedback on belief updating from the information content of the feedback itself. A Bayesian updating model allowed us to quantify different aspects of belief updating across trials, including the size of belief updates and the uncertainty of beliefs. Faster learning rates were observed in the monetary feedback condition compared to the instructive feedback condition, while belief updates were generally larger, and belief uncertainty smaller, with monetary compared to instructive feedback. Larger amplitudes in the monetary feedback condition were found for three ERP components: the P3a, the feedback-related negativity, and the late positive potential. These findings suggest that motivational state influences inference strategies in reward learning, and this is reflected in the electrophysiological correlates of belief updating.
  • Item
    Thumbnail Image
    The neural encoding of information prediction errors during non-instrumental information seeking
    Brydevall, M ; Bennett, D ; Murawski, C ; Bode, S (Nature Publishing Group, 2018-04-17)
    In a dynamic world, accurate beliefs about the environment are vital for survival, and individuals should therefore regularly seek out new information with which to update their beliefs. This aspect of behaviour is not well captured by standard theories of decision making, and the neural mechanisms of information seeking remain unclear. One recent theory posits that valuation of information results from representation of informative stimuli within canonical neural reward-processing circuits, even if that information lacks instrumental use. We investigated this question by recording EEG from twenty-three human participants performing a non-instrumental information-seeking task. In this task, participants could pay a monetary cost to receive advance information about the likelihood of receiving reward in a lottery at the end of each trial. Behavioural results showed that participants were willing to incur considerable monetary costs to acquire early but non-instrumental information. Analysis of the event-related potential elicited by informative cues revealed that the feedback-related negativity independently encoded both an information prediction error and a reward prediction error. These findings are consistent with the hypothesis that information seeking results from processing of information within neural reward circuits, and suggests that information may represent a distinct dimension of valuation in decision making under uncertainty.
  • Item
    Thumbnail Image
    Single-Trial Event-Related Potential Correlates of Belief Updating
    Bennett, D ; Murawski, C ; Bode, S (SOC NEUROSCIENCE, 2015-09)
    Belief updating-the process by which an agent alters an internal model of its environment-is a core function of the CNS. Recent theory has proposed broad principles by which belief updating might operate, but more precise details of its implementation in the human brain remain unclear. In order to address this question, we studied how two components of the human event-related potential encoded different aspects of belief updating. Participants completed a novel perceptual learning task while electroencephalography was recorded. Participants learned the mapping between the contrast of a dynamic visual stimulus and a monetary reward and updated their beliefs about a target contrast on each trial. A Bayesian computational model was formulated to estimate belief states at each trial and was used to quantify the following two variables: belief update size and belief uncertainty. Robust single-trial regression was used to assess how these model-derived variables were related to the amplitudes of the P3 and the stimulus-preceding negativity (SPN), respectively. Results showed a positive relationship between belief update size and P3 amplitude at one fronto-central electrode, and a negative relationship between SPN amplitude and belief uncertainty at a left central and a right parietal electrode. These results provide evidence that belief update size and belief uncertainty have distinct neural signatures that can be tracked in single trials in specific ERP components. This, in turn, provides evidence that the cognitive mechanisms underlying belief updating in humans can be described well within a Bayesian framework.
  • Item
    Thumbnail Image
    Intrinsic Valuation of Information in Decision Making under Uncertainty
    Bennett, D ; Bode, S ; Brydevall, M ; Warren, H ; Murawski, C ; O'Reilly, JX (PLOS, 2016-07-01)
    In a dynamic world, an accurate model of the environment is vital for survival, and agents ought regularly to seek out new information with which to update their world models. This aspect of behaviour is not captured well by classical theories of decision making, and the cognitive mechanisms of information seeking are poorly understood. In particular, it is not known whether information is valued only for its instrumental use, or whether humans also assign it a non-instrumental intrinsic value. To address this question, the present study assessed preference for non-instrumental information among 80 healthy participants in two experiments. Participants performed a novel information preference task in which they could choose to pay a monetary cost to receive advance information about the outcome of a monetary lottery. Importantly, acquiring information did not alter lottery outcome probabilities. We found that participants were willing to incur considerable monetary costs to acquire payoff-irrelevant information about the lottery outcome. This behaviour was well explained by a computational cognitive model in which information preference resulted from aversion to temporally prolonged uncertainty. These results strongly suggest that humans assign an intrinsic value to information in a manner inconsistent with normative accounts of decision making under uncertainty. This intrinsic value may be associated with adaptive behaviour in real-world environments by producing a bias towards exploratory and information-seeking behaviour.
  • Item
    Thumbnail Image
    Distributed Patterns of Event-Related Potentials Predict Subsequent Ratings of Abstract Stimulus Attributes
    Bode, S ; Bennett, D ; Stahl, J ; Murawski, C ; Kotz, S (PUBLIC LIBRARY SCIENCE, 2014-10-01)
    Exposure to pleasant and rewarding visual stimuli can bias people's choices towards either immediate or delayed gratification. We hypothesised that this phenomenon might be based on carry-over effects from a fast, unconscious assessment of the abstract 'time reference' of a stimuli, i.e. how the stimulus relates to one's personal understanding and connotation of time. Here we investigated whether participants' post-experiment ratings of task-irrelevant, positive background visual stimuli for the dimensions 'arousal' (used as a control condition) and 'time reference' were related to differences in single-channel event-related potentials (ERPs) and whether they could be predicted from spatio-temporal patterns of ERPs. Participants performed a demanding foreground choice-reaction task while on each trial one task-irrelevant image (depicting objects, people and scenes) was presented in the background. Conventional ERP analyses as well as multivariate support vector regression (SVR) analyses were conducted to predict participants' subsequent ratings. We found that only SVR allowed both 'arousal' and 'time reference' ratings to be predicted during the first 200 ms post-stimulus. This demonstrates an early, automatic semantic stimulus analysis, which might be related to the high relevance of 'time reference' to everyday decision-making and preference formation.