Pathology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    Thumbnail Image
    Pharmacotherapeutic targets in Alzheimer's disease
    Biran, Y ; Masters, CL ; Barnham, KJ ; Bush, AI ; Adlard, PA (WILEY, 2009-01)
    Alzheimer's disease (AD) is a progressive neurodegenerative disorder which is characterized by an increasing impairment in normal memory and cognitive processes that significantly diminishes a person's daily functioning. Despite decades of research and advances in our understanding of disease aetiology and pathogenesis, there are still no effective disease-modifying drugs available for the treatment of AD. However, numerous compounds are currently undergoing pre-clinical and clinical evaluations. These candidate pharma-cotherapeutics are aimed at various aspects of the disease, such as the microtubule-associated tau-protein, the amyloid-beta(Abeta) peptide and metal ion dyshomeostasis--all of which are involved in the development and progression of AD. We will review the way these pharmacological strategies target the biochemical and clinical features of the disease and the investigational drugs for each category.
  • Item
    Thumbnail Image
    Intracellular amyloid formation in muscle cells of Aβ-transgenic Caenorhabditis elegans: determinants and physiological role in copper detoxification
    Minniti, AN ; Rebolledo, DL ; Grez, PM ; Fadic, R ; Aldunate, R ; Volitakis, I ; Cherny, RA ; Opazo, C ; Masters, C ; Bush, AI ; Inestrosa, NC (BMC, 2009-01-06)
    BACKGROUND: The amyloid beta-peptide is a ubiquitous peptide, which is prone to aggregate forming soluble toxic oligomers and insoluble less-toxic aggregates. The intrinsic and external/environmental factors that determine Abeta aggregation in vivo are poorly understood, as well as the cellular meaning of this process itself. Genetic data as well as cell biological and biochemical evidence strongly support the hypothesis that Abeta is a major player in the onset and development of Alzheimer's disease. In addition, it is also known that Abeta is involved in Inclusion Body Myositis, a common myopathy of the elderly in which the peptide accumulates intracellularly. RESULTS: In the present work, we found that intracellular Abeta aggregation in muscle cells of Caenorhabditis elegans overexpressing Abeta peptide is affected by two single amino acid substitutions, E22G (Arctic) and V18A (NIC). Both variations show decrease intracellular amyloidogenesis compared to wild type Abeta. We show that intracellular amyloid aggregation of wild type Abeta is accelerated by Cu2+ and diminished by copper chelators. Moreover, we demonstrate through toxicity and behavioral assays that Abeta-transgenic worms display a higher tolerance to Cu2+ toxic effects and that this resistance may be linked to the formation of amyloid aggregates. CONCLUSION: Our data show that intracellular Abeta amyloid aggregates may trap excess of free Cu2+ buffering its cytotoxic effects and that accelerated intracellular Abeta aggregation may be part of a cell protective mechanism.
  • Item
    Thumbnail Image
    Mitochondrial Oxidative Stress Causes Hyperphosphorylation of Tau
    Melov, S ; Adlard, PA ; Morten, K ; Johnson, F ; Golden, TR ; Hinerfeld, D ; Schilling, B ; Mavros, C ; Masters, CL ; Volitakis, I ; Li, Q-X ; Laughton, K ; Hubbard, A ; Cherny, RA ; Gibson, B ; Bush, AI ; Khoury, JE (PUBLIC LIBRARY SCIENCE, 2007-06-20)
    Age-related neurodegenerative disease has been mechanistically linked with mitochondrial dysfunction via damage from reactive oxygen species produced within the cell. We determined whether increased mitochondrial oxidative stress could modulate or regulate two of the key neurochemical hallmarks of Alzheimer's disease (AD): tau phosphorylation, and beta-amyloid deposition. Mice lacking superoxide dismutase 2 (SOD2) die within the first week of life, and develop a complex heterogeneous phenotype arising from mitochondrial dysfunction and oxidative stress. Treatment of these mice with catalytic antioxidants increases their lifespan and rescues the peripheral phenotypes, while uncovering central nervous system pathology. We examined sod2 null mice differentially treated with high and low doses of a catalytic antioxidant and observed striking elevations in the levels of tau phosphorylation (at Ser-396 and other phospho-epitopes of tau) in the low-dose antioxidant treated mice at AD-associated residues. This hyperphosphorylation of tau was prevented with an increased dose of the antioxidant, previously reported to be sufficient to prevent neuropathology. We then genetically combined a well-characterized mouse model of AD (Tg2576) with heterozygous sod2 knockout mice to study the interactions between mitochondrial oxidative stress and cerebral Ass load. We found that mitochondrial SOD2 deficiency exacerbates amyloid burden and significantly reduces metal levels in the brain, while increasing levels of Ser-396 phosphorylated tau. These findings mechanistically link mitochondrial oxidative stress with the pathological features of AD.
  • Item
    Thumbnail Image
    Mechanisms of Copper Ion Mediated Huntington's Disease Progression
    Fox, JH ; Kama, JA ; Lieberman, G ; Chopra, R ; Dorsey, K ; Chopra, V ; Volitakis, I ; Cherny, RA ; Bush, AI ; Hersch, S ; Gwinn-Hardy, K (PUBLIC LIBRARY SCIENCE, 2007-03-28)
    Huntington's disease (HD) is caused by a dominant polyglutamine expansion within the N-terminus of huntingtin protein and results in oxidative stress, energetic insufficiency and striatal degeneration. Copper and iron are increased in the striata of HD patients, but the role of these metals in HD pathogenesis is unknown. We found, using inductively-coupled-plasma mass spectroscopy, that elevations of copper and iron found in human HD brain are reiterated in the brains of affected HD transgenic mice. Increased brain copper correlated with decreased levels of the copper export protein, amyloid precursor protein. We hypothesized that increased amounts of copper bound to low affinity sites could contribute to pro-oxidant activities and neurodegeneration. We focused on two proteins: huntingtin, because of its centrality to HD, and lactate dehydrogenase (LDH), because of its documented sensitivity to copper, necessity for normoxic brain energy metabolism and evidence for altered lactate metabolism in HD brain. The first 171 amino acids of wild-type huntingtin, and its glutamine expanded mutant form, interacted with copper, but not iron. N171 reduced Cu(2+)in vitro in a 1:1 copper:protein stoichiometry indicating that this fragment is very redox active. Further, copper promoted and metal chelation inhibited aggregation of cell-free huntingtin. We found decreased LDH activity, but not protein, and increased lactate levels in HD transgenic mouse brain. The LDH inhibitor oxamate resulted in neurodegeneration when delivered intra-striatially to healthy mice, indicating that LDH inhibition is relevant to neurodegeneration in HD. Our findings support a role of pro-oxidant copper-protein interactions in HD progression and offer a novel target for pharmacotherapeutics.
  • Item
    Thumbnail Image
    SLC30A3 Responds to Glucose- and Zinc Variations in β-Cells and Is Critical for Insulin Production and In Vivo Glucose-Metabolism During β-Cell Stress
    Smidt, K ; Jessen, N ; Petersen, AB ; Larsen, A ; Magnusson, N ; Jeppesen, JB ; Stoltenberg, M ; Culvenor, JG ; Tsatsanis, A ; Brock, B ; Schmitz, O ; Wogensen, L ; Bush, AI ; Rungby, J ; Maedler, K (PUBLIC LIBRARY SCIENCE, 2009-05-25)
    BACKGROUND: Ion transporters of the Slc30A- (ZnT-) family regulate zinc fluxes into sub-cellular compartments. beta-cells depend on zinc for both insulin crystallization and regulation of cell mass. METHODOLOGY/PRINCIPAL FINDINGS: This study examined: the effect of glucose and zinc chelation on ZnT gene and protein levels and apoptosis in beta-cells and pancreatic islets, the effects of ZnT-3 knock-down on insulin secretion in a beta-cell line and ZnT-3 knock-out on glucose metabolism in mice during streptozotocin-induced beta-cell stress. In INS-1E cells 2 mM glucose down-regulated ZnT-3 and up-regulated ZnT-5 expression relative to 5 mM. 16 mM glucose increased ZnT-3 and decreased ZnT-8 expression. Zinc chelation by DEDTC lowered INS-1E insulin content and insulin expression. Furthermore, zinc depletion increased ZnT-3- and decreased ZnT-8 gene expression whereas the amount of ZnT-3 protein in the cells was decreased. Zinc depletion and high glucose induced apoptosis and necrosis in INS-1E cells. The most responsive zinc transporter, ZnT-3, was investigated further; by immunohistochemistry and western blotting ZnT-3 was demonstrated in INS-1E cells. 44% knock-down of ZnT-3 by siRNA transfection in INS-1E cells decreased insulin expression and secretion. Streptozotocin-treated mice had higher glucose levels after ZnT-3 knock-out, particularly in overt diabetic animals. CONCLUSION/SIGNIFICANCE: Zinc transporting proteins in beta-cells respond to variations in glucose and zinc levels. ZnT-3, which is pivotal in the development of cellular changes as also seen in type 2 diabetes (e.g. amyloidosis in Alzheimer's disease) but not previously described in beta-cells, is present in this cell type, up-regulated by glucose in a concentration dependent manner and up-regulated by zinc depletion which by contrast decreased ZnT-3 protein levels. Knock-down of the ZnT-3 gene lowers insulin secretion in vitro and affects in vivo glucose metabolism after streptozotocin treatment.
  • Item
    Thumbnail Image
    Metal homeostasis in Alzheimer's disease
    White, AR ; Barnham, KJ ; Bush, AI (TAYLOR & FRANCIS LTD, 2006-05)
    2012 has been another year in which multiple large-scale clinical trials for Alzheimer's disease (AD) have failed to meet their clinical endpoints. With the social and financial burden of this disease increasing every year, the onus is now on the field of AD researchers to investigate alternative ideas to deliver outcomes for patients. Although several major clinical trials targeting Aβ have failed, three smaller clinical trials targeting metal interactions with Aβ have all shown benefit for patients. Here we review the genetic, pathological, biochemical, and pharmacological evidence that underlies the metal hypothesis of AD. The AD-affected brain suffers from metallostasis, or fatigue of metal trafficking, resulting in redistribution of metals into inappropriate compartments. The metal hypothesis is built upon a triad of transition elements: iron, copper, and zinc. The hypothesis has matured from early investigations showing amyloidogenic and oxidative stress consequences of these metals; recently, disease-related proteins, APP, tau, and presenilin, have been shown to have major roles in metal regulation, which provides insight into the pathway of neurodegeneration in AD and illuminates potential new therapeutic avenues.