Pathology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 8 of 8
  • Item
    Thumbnail Image
    A critical role for natural killer T cells in immunosurveillance of methylcholanthrene-induced sarcomas
    Crowe, NY ; Smyth, MJ ; Godfrey, DI (ROCKEFELLER UNIV PRESS, 2002-07-01)
    Natural killer (NK) T cells initiate potent antitumor responses when stimulated by exogenous factors such as interleukin (IL)-12 or alpha-galactosylceramide (alpha-GalCer), however, it is not clear whether this reflects a physiological role for these cells in tumor immunity. Through adoptive transfer of NK T cells from wild-type to NK T cell-deficient (T cell receptor [TCR] Jalpha281-/-) mice, we demonstrate a critical role for NK T cells in immunosurveillance of methylcholanthrene (MCA)-induced fibrosarcomas, in the absence of exogenous stimulatory factors. Using the same approach with gene-targeted and/or antibody-depleted donor or recipient mice, we have shown that this effect depends on CD1d recognition and requires the additional involvement of both NK and CD8+ T cells. Interferon-gamma production by both NK T cells and downstream, non-NK T cells, is essential for protection, and perforin production by effector cells, but not NK T cells, is also critical. The protective mechanisms in this more physiologically relevant system are distinct from those associated with alpha-GalCer-induced, NK T cell-mediated, tumor rejection. This study demonstrates that, in addition to their importance in tumor immunotherapy induced by IL-12 or alpha-GalCer, NK T cells can play a critical role in tumor immunosurveillance, at least against MCA-induced sarcomas, in the absence of exogenous stimulation.
  • Item
    Thumbnail Image
    Sequential activation of NKT cells and NK cells provides effective innate immunotherapy of cancer
    Smyth, MJ ; Wallace, ME ; Nutt, SL ; Yagita, H ; Godfrey, DI ; Hayakawa, Y (ROCKEFELLER UNIV PRESS, 2005-06-20)
    The CD1d reactive glycolipid, alpha-galactosylceramide (alpha-GalCer), potently activates T cell receptor-alpha type I invariant NKT cells that secondarily stimulate the proliferation and activation of other leukocytes, including NK cells. Here we report a rational approach to improving the antitumor activity of alpha-GalCer by using delayed interleukin (IL)-21 treatment to mature the alpha-GalCer-expanded pool of NK cells into highly cytotoxic effector cells. In a series of experimental and spontaneous metastases models in mice, we demonstrate far superior antitumor activity of the alpha-GalCer/IL-21 combination above either agent alone. Superior antitumor activity was critically dependent upon the increased perforin-mediated cytolytic activity of NK cells. Transfer of alpha-GalCer-pulsed dendritic cells (DCs) followed by systemic IL-21 caused an even more significant reduction in established (day 8) metastatic burden and prolonged survival. In addition, this combination prevented chemical carcinogenesis more effectively. Combinations of IL-21 with other NK cell-activating cytokines, such as IL-2 and IL-12, were much less effective in the same experimental metastases models, and these cytokines did not substitute effectively for IL-21 in combination with alpha-GalCer. Overall, the data suggest that NK cell antitumor function can be enhanced greatly by strategies that are designed to expand and differentiate NK cells via DC activation of NKT cells.
  • Item
    Thumbnail Image
    A nonclassical non-Vα14Jα18 CD1d-restricted (type II) NKT cell is sufficient for down-regulation of tumor immunosurveillance
    Terabe, M ; Swann, J ; Ambrosino, E ; Sinha, P ; Takaku, S ; Hayakawa, Y ; Godfrey, DI ; Ostrand-Rosenberg, S ; Smyth, MJ ; Berzofsky, JA (ROCKEFELLER UNIV PRESS, 2005-12-19)
    The importance of immunoregulatory T cells has become increasingly apparent. Both CD4+CD25+ T cells and CD1d-restricted NKT cells have been reported to down-regulate tumor immunity in mouse tumor models. However, the relative roles of both T cell populations have rarely been clearly distinguished in the same tumor models. In addition, CD1d-restricted NKT cells have been reported to play a critical role not only in the down-regulation of tumor immunity but also in the promotion of the immunity. However, the explanation for these apparently opposite roles in different tumor models remains unclear. We show that in four mouse tumor models in which CD1d-restricted NKT cells play a role in suppression of tumor immunity, depletion of CD4+CD25+ T cells did not induce enhancement of immunosurveillance. Surprisingly, among the two subpopulations of CD1d-restricted NKT cells, Valpha14Jalpha18+ (type I) and Valpha14Jalpha18- (type II) NKT cells, type I NKT cells were not necessary for the immune suppression. These unexpected results may now resolve the paradox in the role of CD1d-restricted NKT cells in the regulation of tumor immunity, in that type II NKT cells may be sufficient for negative regulation, whereas protection has been found to be mediated by alpha-galactosylceramide-responsive type I NKT cells.
  • Item
    Thumbnail Image
    Innate immune surveillance of spontaneous B cell lymphomas by natural killer cells and γδ T cells
    Street, SEA ; Hayakawa, Y ; Zhan, YF ; Lew, AM ; MacGregor, D ; Jamieson, AM ; Diefenbach, A ; Yagita, H ; Godfrey, DI ; Smyth, MJ (ROCKEFELLER UNIV PRESS, 2004-03-15)
    Few studies have demonstrated that innate lymphocytes play a major role in preventing spontaneous tumor formation. We evaluated the development of spontaneous tumors in mice lacking beta-2 microglobulin (beta2m; and thus MHC class I, CD1d, and CD16) and/or perforin, since these tumor cells would be expected to activate innate effector cells. Approximately half the cohort of perforin gene-targeted mice succumbed to spontaneous disseminated B cell lymphomas and in mice that also lacked beta2m, the lymphomas developed earlier (by more than 100 d) and with greater incidence (84%). B cell lymphomas from perforin/beta2m gene-targeted mice effectively primed cell-mediated cytotoxicity and perforin, but not IFN-gamma, IL-12, or IL-18, was absolutely essential for tumor rejection. Activated NK1.1+ and gammadeltaTCR+ T cells were abundant at the tumor site, and transplanted tumors were strongly rejected by either, or both, of these cell types. Blockade of a number of different known costimulatory pathways failed to prevent tumor rejection. These results reflect a critical role for NK cells and gammadeltaTCR+ T cells in innate immune surveillance of B cell lymphomas, mediated by as yet undetermined pathway(s) of tumor recognition.
  • Item
    Thumbnail Image
    Normal thymocyte negative selection in TRAIL-deficient mice
    Cretney, E ; Uldrich, AP ; Berzins, SP ; Strasser, A ; Godfrey, DI ; Smyth, MJ (ROCKEFELLER UNIV PRESS, 2003-08-04)
    The molecular basis of thymocyte negative selection, which plays a critical role in establishing and maintaining immunological tolerance, is not yet resolved. In particular, the importance of the death receptor subgroup of the tumor necrosis factor (TNF)-family has been the subject of many investigations, with equivocal results. A recent report suggested that TRAIL was a critical factor in this process, a result that does not fit well with previous studies that excluded a role for the FADD-caspase 8 pathway, which is essential for TRAIL and Fas ligand (FasL) signaling, in negative selection. We have investigated intrathymic negative selection of TRAIL-deficient thymocytes, using four well-established models, including antibody-mediated TCR/CD3 ligation in vitro, stimulation with endogenous superantigen in vitro and in vivo, and treatment with exogenous superantigen in vitro. We were unable to demonstrate a role for TRAIL signaling in any of these models, suggesting that this pathway is not a critical factor for thymocyte negative selection.
  • Item
    Thumbnail Image
    A natural killer T (NKT) cell developmental pathway involving a thymus-dependent NK1.1- CD4+ CD1d-dependent precursor stage
    Pellicci, DG ; Hammond, KJL ; Uldrich, AP ; Baxter, AG ; Smyth, MJ ; Godfrey, DI (ROCKEFELLER UNIV PRESS, 2002-04-01)
    The development of CD1d-dependent natural killer T (NKT) cells is poorly understood. We have used both CD1d/alpha-galactosylceramide (CD1d/alphaGC) tetramers and anti-NK1.1 to investigate NKT cell development in vitro and in vivo. Confirming the thymus-dependence of these cells, we show that CD1d/alphaGC tetramer-binding NKT cells, including NK1.1(+) and NK1.1(-) subsets, develop in fetal thymus organ culture (FTOC) and are completely absent in nude mice. Ontogenically, CD1d/alphaGC tetramer-binding NKT cells first appear in the thymus, at day 5 after birth, as CD4(+)CD8(-)NK1.1(-)cells. NK1.1(+) NKT cells, including CD4(+) and CD4(-)CD8(-) subsets, appeared at days 7-8 but remained a minor subset until at least 3 wk of age. Using intrathymic transfer experiments, CD4(+)NK1.1(-) NKT cells gave rise to NK1.1(+) NKT cells (including CD4(+) and CD4(-) subsets), but not vice-versa. This maturation step was not required for NKT cells to migrate to other tissues, as NK1.1(-) NKT cells were detected in liver and spleen as early as day 8 after birth, and the majority of NKT cells among recent thymic emigrants (RTE) were NK1.1(-). Further elucidation of this NKT cell developmental pathway should prove to be invaluable for studying the mechanisms that regulate the development of these cells.
  • Item
    Thumbnail Image
    Induction of tumor-specific T cell memory by NK cell-mediated tumor rejection
    Kelly, JM ; Darcy, PK ; Markby, JL ; Godfrey, DI ; Takedo, K ; Yagita, H ; Smyth, MJ (NATURE PUBLISHING GROUP, 2002-01)
    Natural killer (NK) cells may modulate the development of adaptive immune responses, but until now there has been little evidence to support this hypothesis. We investigated the primary and secondary immunity elicited by various tumor cell lines that express CD70 and interact with CD70 ligand (CD27), which is constitutively expressed on NK cells. CD70 expression enhanced primary tumor rejection in vivo as well as T cell immunity against secondary tumor challenge. Primary rejection of major histocompatibility complex (MHC) class I-deficient RMA-S.CD70 tumor cells was mediated by NK cells and perforin- and interferon-gamma-dependent mechanisms. This NK cell-mediated process also efficiently evoked the subsequent development of tumor-specific cytotoxic and T helper type 1 responses to the parental, MHC class I-sufficient, RMA tumor cells. Thus CD27-CD70 interactions provide a key link between innate NK cell responses and adaptive T cell immunity.
  • Item
    Thumbnail Image
    Differential antitumor immunity mediated by NKT cell subsets in vivo
    Crowe, NY ; Coquet, JM ; Berzins, SP ; Kyparissoudis, K ; Keating, R ; Pellicci, DG ; Hayakawa, Y ; Godfrey, DI ; Smyth, MJ (ROCKEFELLER UNIV PRESS, 2005-11-07)
    We showed previously that NKT cell-deficient TCR Jalpha18(-/-) mice are more susceptible to methylcholanthrene (MCA)-induced sarcomas, and that normal tumor surveillance can be restored by adoptive transfer of WT liver-derived NKT cells. Liver-derived NKT cells were used in these studies because of their relative abundance in this organ, and it was assumed that they were representative of NKT cells from other sites. We compared NKT cells from liver, thymus, and spleen for their ability to mediate rejection of the sarcoma cell line (MCA-1) in vivo, and found that this was a specialized function of liver-derived NKT cells. Furthermore, when CD4(+) and CD4(-) liver-derived NKT cells were administered separately, MCA-1 rejection was mediated primarily by the CD4(-) fraction. Very similar results were achieved using the B16F10 melanoma metastasis model, which requires NKT cell stimulation with alpha-galactosylceramide. The impaired ability of thymus-derived NKT cells was due, in part, to their production of IL-4, because tumor immunity was clearly enhanced after transfer of IL-4-deficient thymus-derived NKT cells. This is the first study to demonstrate the existence of functionally distinct NKT cell subsets in vivo and may shed light on the long-appreciated paradox that NKT cells function as immunosuppressive cells in some disease models, whereas they promote cell-mediated immunity in others.