Surgery (Austin & Northern Health) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    Zinc Preconditioning Provides Cytoprotection following Iodinated Contrast Media Exposure in In Vitro Models
    Perera, M ; Ischia, J ; Bolton, D ; Shulkes, A ; Baldwin, GS ; Patel, O ; de Barros, ALB (WILEY-HINDAWI, 2021-02-17)
    METHODS: Normal human proximal renal kidney cells (HK-2) were preconditioned with either increasing doses of ZnCl2 or control. Following this preconditioning, cells were exposed to increasing concentrations of Iohexol 300 mg I2/ml for four hours. Key outcome measures included cell survival (MTT colorimetric assay) and ROS generation (H2DCFDA fluorescence assay). RESULTS: Contrast media induced a dose-dependent reduction in survival of HK-2 cells. Compared to control, contrast media at 150, 225, and 300 mg I2/ml resulted in 69.5% (SD 8.8%), 37.3% (SD 4.8%), and 4.8% (SD 6.6%) cell survival, respectively (p < 0.001). Preconditioning with 37.5 μM and 50 μM ZnCl2 increased cell survival by 173% (SD 27.8%) (p < 0.001) and 219% (SD 32.2%) (p < 0.001), respectively, compared to control preconditioning. Zinc preconditioning resulted in a reduction of ROS generation. Zinc pre-conditioning with 37.5 μM μM ZnCl2 reduced ROS generation by 46% (p < 0.001) compared to control pre-conditioning. CONCLUSIONS: Zinc preconditioning reduces oxidative stress following exposure to radiographic contrast media which in turn results in increased survival of renal cells. Translation of this in vitro finding in animal models will lay the foundation for future use of zinc preconditioning against contrast induced nephropathy.
  • Item
    Thumbnail Image
    Experimental rat models for contrast-induced nephropathy; A comprehensive review
    Perera, M ; Ischia, J ; Bolton, D ; Shulkes, A ; Baldwin, GS ; Patel, O (Society of Diabetic Nephropathy Prevention, 2020-04-01)
    Contrast-induced nephropathy (CIN) is an iatrogenic disease caused by the parenteral administration of iodinated contrast media (CM). A number of agents are currently being assessed to minimise or prevent CIN. Such agents are typically assessed using rat models. The aim of this study was to provide a comprehensive review of the rat models of CIN used in pre-clinical research. The MEDLINE, EMBASE, Web of Science and Cochrane databases were systematically searched. Articles reporting rat models of CIN were included for assessment. Study designs, contrast agents and outcome measures were assessed. Of the assessed studies, a majority report a requirement for pre-existing renal impairment prior to the administration of CM. Outcome measures are heterogenous between studies, but typically include assessment and quantification of serum biochemical markers, cellular oxidative stress and histopathological changes. The significant variation in methodology reported in the current literature highlights the lack of consensus. The use of a reliable pre-contrast insult appears critical to result in the development of contrast nephropathy. The use of acceptable outcome measures appears to include serum laboratory markers, quantification of reactive oxygen species (ROS) and objective histopathological outcomes.
  • Item
    Thumbnail Image
    Corrigendum to "Targeting HIF-1α to Prevent Renal Ischemia-Reperfusion Injury: Does It Work?".
    Sethi, K ; Rao, K ; Shulkes, A ; Baldwin, G ; Bolton, D ; Patel, O ; Ischia, J (Hindawi Limited, 2019)
    [This corrects the article DOI: 10.1155/2018/9852791.].
  • Item
    Thumbnail Image
    Protective effect of zinc preconditioning against renal ischemia reperfusion injury is dose dependent
    Rao, K ; Sethi, K ; Ischia, J ; Gibson, L ; Galea, L ; Xiao, L ; Yim, M ; Chang, M ; Papa, N ; Bolton, D ; Shulkes, A ; Baldwin, GS ; Patel, O ; Mariat, C (PUBLIC LIBRARY SCIENCE, 2017-07-07)
    OBJECTIVES: Ischemia-reperfusion injury (IRI) is a major cause of acute kidney injury and chronic kidney disease. Two promising preconditioning methods for the kidney, intermittent arterial clamping (IC) and treatment with the hypoxia mimetic cobalt chloride, have never been directly compared. Furthermore, the protective efficacy of the chemically related transition metal Zn2+ against renal IRI is unclear. Although Co2+ ions have been shown to protect the kidney via hypoxia inducible factor (HIF), the effect of Zn2+ ions on the induction of HIF1α, HIF2α and HIF3α has not been investigated previously. MATERIALS AND METHODS: The efficacy of different preconditioning techniques was assessed using a Sprague-Dawley rat model of renal IRI. Induction of HIF proteins following Zn2+ treatment of the human kidney cell lines HK-2 (immortalized normal tubular cells) and ACHN (renal cancer) was measured using Western Blot. RESULTS: Following 40 minutes of renal ischemia in rats, cobalt preconditioning offered greater protection against renal IRI than IC as evidenced by lower peak serum creatinine and urea concentrations. ZnCl2 (10 mg/kg) significantly lowered the creatinine and urea concentrations compared to saline-treated control rats following a clinically relevant 60 minutes of ischemia. Zn2+ induced expression of HIF1α and HIF2α but not HIF3α in HK-2 and ACHN cells. CONCLUSION: ZnCl2 preconditioning protects against renal IRI in a dose-dependent manner. Further studies are warranted to determine the possible mechanisms involved, and to assess the benefit of ZnCl2 preconditioning for clinical applications.
  • Item
    Thumbnail Image
    Zinc ion dyshomeostasis increases resistance of prostate cancer cells to oxidative stress via upregulation of HIF1α.
    Wetherell, D ; Baldwin, GS ; Shulkes, A ; Bolton, D ; Ischia, J ; Patel, O (‎Impact Journals, 2018-02-02)
    Zinc ions (Zn2+) are known to influence cell survival and proliferation. However the homeostatic regulation of Zn2+ and their role in prostate cancer (PC) progression is poorly understood. Therefore the subcellular distribution and uptake of Zn2+ in PC cells were investigated. Inductively coupled plasma mass spectroscopy and fluorescent microscopy with the Zn2+-specific fluorescent probe FluoZin-3 were used to quantify total and free Zn2+, respectively, in the normal prostate epithelial cell line (PNT1A) and three human PC cell lines (PC3, DU145 and LNCaP). The effects of Zn2+ treatment on proliferation and survival were measured in vitro using MTT assays and in vivo using mouse xenografts. The ability of Zn2+ to protect against oxidative stress via a HIF1α-dependent mechanism was investigated using a HIF1α knock-down PC3 model. Our results demonstrate that the total Zn2+ concentration in normal PNT1A and PC cells is similar, but PC3 cells contain significantly higher free Zn2+ than PNT1A cells (p < 0.01). PNT1A cells can survive better in the presence of high concentrations of Zn2+ than PC3 cells. Exposure to 10 µM Zn2+ over 72 hours significantly reduces PC3 cell proliferation in vitro but not in vivo. Zn2+ increases PC3 cell survival up to 2.3-fold under oxidative stress, and this protective effect is not seen in PNT1A cells or in a HIF1α-KD PC3 cell model. A state of Zn2+ dyshomeostasis exists in PC. HIF1α is an integral component of a Zn2+-dependent protective mechanism present in PC3 cells. This pathway may be clinically significant through its contribution to castrate-resistant PC survival.