Surgery (Austin & Northern Health) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    The effects of nonspecific HIF1α inhibitors on development of castrate resistance and metastases in prostate cancer
    Ranasinghe, WKB ; Sengupta, S ; Williams, S ; Chang, M ; Shulkes, A ; Bolton, DM ; Baldwin, G ; Patel, O (WILEY-BLACKWELL, 2014-04)
    Expression of hypoxia-inducible factor (HIF)1α increases the risk of castrate-resistant prostate cancer (CRPC) and metastases in patients on androgen deprivation therapy (ADT) for prostate cancer (PC). We aimed to investigate the effects of nonspecific HIF1α inhibitors (Digoxin, metformin, and angiotensin-2 receptor blockers) on development of CRPC and metastases while on ADT. A retrospective review of prospectively collected medical records was conducted of all men who had continuous ADT as first-line therapy for CRPC at the Austin Hospital from 1983 to 2011. Association between HIF1α inhibitor medications and time to develop CRPC was investigated using actuarial statistics. Ninety-eight patients meeting the criteria were identified. Eighteen patients (21.4%) were treated with the nonspecific HIF1α inhibitors. Both groups had similar characteristics, apart from patients on HIF1α inhibitors being older (70 years vs. 63.9 years). The median CRPC-free survival was longer in men using HIF1α inhibitors compared to those not on inhibitors (6.7 years vs. 2.7 years, P = 0.01) and there was a 71% reduction in the risk of developing CRPC (HR 0.29 [95% CI 0.10-0.78] P = 0.02) after adjustment for Gleason score, age, and prostate-specific antigen (PSA). The median metastasis-free survival in men on HIF1α inhibitors was also significantly longer compared to those on no inhibitors (5.1 years vs. 2.6 years, P = 0.01) with an 81% reduction in the risk of developing metastases (HR 0.19 [CI 0.05-0.76] P = 0.02) after adjustment for Gleason score, age, and PSA. Nonspecific HIF1α inhibitors appear to increase the progression-free survival and reduce the risk of developing CRPC and metastases in patients on continuous ADT.
  • Item
    Thumbnail Image
    Protective effect of zinc preconditioning against renal ischemia reperfusion injury is dose dependent
    Rao, K ; Sethi, K ; Ischia, J ; Gibson, L ; Galea, L ; Xiao, L ; Yim, M ; Chang, M ; Papa, N ; Bolton, D ; Shulkes, A ; Baldwin, GS ; Patel, O ; Mariat, C (PUBLIC LIBRARY SCIENCE, 2017-07-07)
    OBJECTIVES: Ischemia-reperfusion injury (IRI) is a major cause of acute kidney injury and chronic kidney disease. Two promising preconditioning methods for the kidney, intermittent arterial clamping (IC) and treatment with the hypoxia mimetic cobalt chloride, have never been directly compared. Furthermore, the protective efficacy of the chemically related transition metal Zn2+ against renal IRI is unclear. Although Co2+ ions have been shown to protect the kidney via hypoxia inducible factor (HIF), the effect of Zn2+ ions on the induction of HIF1α, HIF2α and HIF3α has not been investigated previously. MATERIALS AND METHODS: The efficacy of different preconditioning techniques was assessed using a Sprague-Dawley rat model of renal IRI. Induction of HIF proteins following Zn2+ treatment of the human kidney cell lines HK-2 (immortalized normal tubular cells) and ACHN (renal cancer) was measured using Western Blot. RESULTS: Following 40 minutes of renal ischemia in rats, cobalt preconditioning offered greater protection against renal IRI than IC as evidenced by lower peak serum creatinine and urea concentrations. ZnCl2 (10 mg/kg) significantly lowered the creatinine and urea concentrations compared to saline-treated control rats following a clinically relevant 60 minutes of ischemia. Zn2+ induced expression of HIF1α and HIF2α but not HIF3α in HK-2 and ACHN cells. CONCLUSION: ZnCl2 preconditioning protects against renal IRI in a dose-dependent manner. Further studies are warranted to determine the possible mechanisms involved, and to assess the benefit of ZnCl2 preconditioning for clinical applications.
  • Item
    Thumbnail Image
    The Role of Hypoxia-Inducible Factor 1α in Determining the Properties of Castrate-Resistant Prostate Cancers
    Ranasinghe, WKB ; Xiao, L ; Kovac, S ; Chang, M ; Michiels, C ; Bolton, D ; Shulkes, A ; Baldwin, GS ; Patel, O ; Agoulnik, IU (PUBLIC LIBRARY SCIENCE, 2013-01-16)
    BACKGROUND: Castrate-resistant prostate cancer (CRPC) is a lethal condition in patients receiving androgen deprivation therapy for prostate cancer (PC). Despite numerous studies showing the expression of HIF1α protein under normoxia in PC cell lines, the role of this normoxic HIF1α expression in chemo-resistance and migration has not been investigated previously. As no method is currently available to determine which tumors will progress to CRPC, the role of HIF1α in PC and its potential for predicting the development of CRPC was also investigated. METHODS: The effect of HIF1α protein knockdown on chemo-resistance and migration of PC3 cells was assessed by cell counting and Transwell assays, respectively. Translation efficiency of HIF1α mRNA was determined in PC cells using a HIF1α 5'UTR-luciferase construct. Clinical outcomes were correlated following the staining of 100 prostate tumors for HIF1α expression. RESULTS: The CRPC-like cell lines (PC3 and DU145) expressed more HIF1α protein than an androgen sensitive cell line (LNCaP). Migration rate and chemo-resistance were higher in the PC3 cells and both were decreased when HIF1α expression was reduced. Increased translation of HIF1α mRNA may be responsible for HIF1α overexpression in PC3 cells. Patients whose tumors expressed HIF1α had significantly decreased metastasis-free survival and the patients who were on androgen-deprivation therapy had decreased CRPC-free survival on Kaplan-Meier analysis. On multivariate analysis HIF1α was an independent risk factor for progression to metastatic PC (Hazard ratio (HR) 9.8, p = 0.017) and development of CRPC (HR 10.0, p = 0.021) in patients on androgen-deprivation therapy. Notably the tumors which did not express HIF1α did not metastasize or develop CRPC. CONCLUSIONS: HIF1α is likely to contribute to metastasis and chemo-resistance of CRPC and targeted reduction of HIF1α may increase the responsiveness of CRPCs to chemotherapy. Expression of HIF1α may be a useful screening tool for development of CRPC.
  • Item
    No Preview Available
    Zinc ions upregulate the hormone gastrin via an E-box motif in the proximal gastrin promoter
    Xiao, L ; Kovac, S ; Chang, M ; Shulkes, A ; Baldwin, GS ; Patel, O (BIOSCIENTIFICA LTD, 2014-02)
    Gastrin and its precursors act as growth factors for the normal and neoplastic gastrointestinal mucosa. As the hypoxia mimetic cobalt chloride upregulates the gastrin gene, the effect of other metal ions on gastrin promoter activity was investigated. Gastrin mRNA was measured by real-time PCR, gastrin peptides by RIA, and gastrin promoter activity by dual-luciferase reporter assay. Exposure to Zn(2)(+) ions increased gastrin mRNA concentrations in the human gastric adenocarcinoma cell line AGS in a dose-dependent manner, with a maximum stimulation of 55 ± 14-fold at 100 μM (P<0.05). Significant stimulation was also observed with Cd(2)(+) and Cu(2)(+), but not with Ca(2)(+), Mg(2)(+), Ni(2)(+), or Fe(3)(+) ions. Activation of MAPK and phosphatidylinositol 3-kinase pathways is necessary but not sufficient for gastrin induction by Zn(2)(+). Deletional mutation of the gastrin promoter identified an 11 bp DNA sequence, which contained an E-box motif, as necessary for Zn(2)(+)-dependent gastrin induction. The fact that E-box binding transcription factors play a crucial role in the epithelial-mesenchymal transition (EMT), together with our observation that Zn(2)(+) ions upregulate the gastrin gene in AGS cells by an E-box-dependent mechanism, suggests that Zn(2)(+) ions may induce an EMT, and that gastrin may be involved in the transition.
  • Item
    No Preview Available
    Induction of Gastrin Expression in Gastrointestinal Cells by Hypoxia or Cobalt Is Independent of Hypoxia-Inducible Factor (HIF)
    Xiao, L ; Kovac, S ; Chang, M ; Shulkes, A ; Baldwin, GS ; Patel, O (ENDOCRINE SOC, 2012-07)
    Gastrin and its precursors have been shown to promote mitogenesis and angiogenesis in gastrointestinal tumors. Hypoxia stimulates tumor growth, but its effect on gastrin gene regulation has not been examined in detail. Here we have investigated the effect of hypoxia on the transcription of the gastrin gene in human gastric cancer (AGS) cells. Gastrin mRNA was measured by real-time PCR, gastrin peptides were measured by RIA, and gastrin promoter activity was measured by dual-luciferase reporter assay. Exposure to a low oxygen concentration (1%) increased gastrin mRNA concentrations in wild-type AGS cells (AGS) and in AGS cells overexpressing the gastrin receptor (AGS-cholecystokinin receptor 2) by 2.1 ± 0.4- and 4.1 ± 0.3-fold (P < 0.05), respectively. The hypoxia mimetic, cobalt chloride (300 μM), increased gastrin promoter activity in AGS cells by 2.4 ± 0.3-fold (P < 0.05), and in AGS-cholecystokinin receptor 2 cells by 4.0 ± 0.3-fold (P < 0.05), respectively. The observations that either deletion from the gastrin promoter of the putative binding sites for the transcription factor hypoxia-inducible factor 1 (HIF-1) or knockdown of either the HIF-1α or HIF-1β subunit did not affect gastrin promoter inducibility under hypoxia indicated that the hypoxic activation of the gastrin gene is likely HIF independent. Mutational analysis of previously identified Sp1 regulatory elements in the gastrin promoter also failed to abrogate the induction of promoter activity by hypoxia. The observations that hypoxia up-regulates the gastrin gene in AGS cells by HIF-independent mechanisms, and that this effect is enhanced by the presence of gastrin receptors, provide potential targets for gastrointestinal cancer therapy.