Melbourne University Sport - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Androgen receptor antagonism accelerates disease onset in the SOD1G93A mouse model of amyotrophic lateral sclerosis
    McLeod, VM ; Lau, CL ; Chiam, MDF ; Rupasinghe, TW ; Roessner, U ; Djouma, E ; Boon, WC ; Turner, BJ (WILEY, 2019-07)
    BACKGROUND AND PURPOSE: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease typically more common in males, implicating androgens in progression of both patients and mouse models. Androgen effects are mediated by androgen receptor which is highly expressed in spinal motor neurons and skeletal muscles. To clarify the role of androgen receptors in ALS, we therefore examined the effect of androgen receptor antagonism in the SOD1G93A mouse model. EXPERIMENTAL APPROACH: The androgen receptor antagonist, flutamide, was administered to presymptomatic SOD1G93A mice as a slow-release subcutaneous implant (5 mg·day-1 ). Testosterone, flutamide, and metabolite levels were measured in blood and spinal cord tissue by LC-MS-MS. Effects on disease onset and progression were assessed using motor function tests, survival, muscle, and neuropathological analyses. KEY RESULTS: Flutamide was metabolised to 2-hydroxyflutamide achieving steady-state plasma levels across the study duration and reached the spinal cord at pharmacologically active concentrations. Flutamide treatment accelerated disease onset and locomotor dysfunction in male SOD1G93A mice, but not female mice, without affecting survival. Analysis of hindlimb muscles revealed exacerbation of myofibre atrophy in male SOD1G93A mice treated with flutamide, although motor neuron pathology was not affected. CONCLUSION AND IMPLICATIONS: The androgen receptor antagonist accelerated disease onset in male SOD1G93A mice, leading to exacerbated muscle pathology, consistent with a role of androgens in modulating disease severity, sexual dimorphism, and peripheral pathology in ALS. These results also demonstrate a key contribution of skeletal muscle pathology to disease onset, but not outcome, in this mouse model of ALS.
  • Item
    Thumbnail Image
    Exploring germline recombination inNestin-Cretransgenic mice using floxed androgen receptor
    McLeod, VM ; Cuic, B ; Chiam, MDF ; Lau, CL ; Turner, BJ (WILEY, 2020-11)
    The Cre-loxP strategy for tissue selective gene deletion has become a widely employed tool in neuroscience research. The validity of these models is largely underpinned by the temporal and spatial selectivity of recombinase expression under the promoter of the Cre driver line. Ectopic Cre-recombinase expression gives rise to off-target effects which can confound results and is especially detrimental if this occurs in germline cells. The Nestin-Cre transgenic mouse is broadly used for selective gene deletion in neurons of the central and peripheral nervous systems. Here we have crossed this mouse with a floxed androgen receptor (AR) transgenic to generate double transgenic neuronal ARKO mice (ARflox ::NesCre) to study germline deletion in male and female transgenic breeders. In male ARflox ::NesCre breeders, a null AR allele was passed on to 86% of progeny regardless of the inheritance of the NesCre transgene. In female ARflox/wt ::NesCre breeders, a null AR allele was passed on to 100% of progeny where ARflox was expected to be transmitted. This surprisingly high incidence of germline recombination in the Nestin-Cre driver line warrants caution in devising suitable breeding strategies, consideration of accurate genotyping approaches and highlights the need for thorough characterization of tissue-specific gene deletion in this model.